Math, asked by tauqeemarah, 10 months ago

suppose 1/a^2 - 1/b^2 =1/c, ab= underroot c,c>0 and a<b. then the average value of a and b is?​

Answers

Answered by Abhishek474241
8

AnSwEr

{\tt{\red{\underline{\large{Given}}}}}

  • \sf\dfrac{1}{a^2}-\dfrac{1}{b^2}=\dfrac{1}{c}
  • where ab = √c
  • c>0 and a<b

{\sf{\green{\underline{\large{To\:find}}}}}

  • Average value of a and b

{\sf{\pink{\underline{\Large{Explanation}}}}}

\sf\dfrac{1}{a^2}-\dfrac{1}{b^2}=\dfrac{1}{c}

Taking LCM ab

\implies\sf\dfrac{b^2-a^2}{a^2b^2}=\dfrac{1}{c}

Here

ab=√c (both side squaring)

=>a²b² = c

utting the value of a²b

\implies\sf\dfrac{b^2-a^2}{a^2b^2}=\dfrac{1}{c}

\implies\sf\dfrac{b^2-a^2}{c}=\dfrac{1}{c}

\implies\sf{b^2-a^2}={1}

\implies\sf{b-a}{b+a}={1}

\implies\sf{b+a}=\dfrac{1}{b-a}

Here average of two no is

\tt{Average=}\frac{a+b}{2}

\implies\sf{b+a}=\dfrac{1}{b-a}

dividing by 2 in both side

\implies\sf\dfrac{b+a}{2}=\dfrac{1}{2(b-a)}

Hence average of a and b is

\sf\dfrac{b+a}{2}=\dfrac{1}{2(b-a)}

Answered by BrainlyIAS
3

\bigstar Given :

  • \frac{1}{a^2}-\frac{1}{b^2}=\frac{1}{c}\\\\
  • ab=\sqrt{c} \\\\
  • c > 0 & a < b.

\bigstar To Find :

  • Average value of a and b
  • i.e.,\frac{(a+b)}{2}

\bigstar Explanation :

\frac{1}{a^2}-\frac{1}{b^2}=\frac{1}{c}\\\\   \implies \frac{b^2-a^2}{a^2.b^2} =\frac{1}{c}\\\\ \implies \frac{b^2-a^2}{(ab)^2} =\frac{1}{c}\\\\\implies  \frac{b^2-a^2}{(\sqrt{c} )^2} =\frac{1}{c} \;\;[Since,\;ab=\sqrt{c} ]\\\\\implies b^2-a^2=1\\\\\implies (b+a)(b-a)=1\\\\\implies (a+b)=\frac{1}{b-a}\\\\ \implies \frac{a+b}{2}=\frac{1}{2(b-a)}\;\;[Dividing\;\;both\;sides\;by\;2]\\\\\bold{\implies \frac{a+b}{2}=\frac{1}{2}.\frac{1}{b-a}   }

Similar questions