Math, asked by aryan021212, 1 day ago

Suppose a is a fixed real number such that

 \frac{a - x}{px}  =  \frac{a -y }{qy}  =  \frac{a - z}{rz}
If p, q, r are in AP, prove that x, y, z are in HP​

Answers

Answered by mathdude500
28

\large\underline{\sf{Solution-}}

Given that

  • p, q, r are in AP

\rm \implies\: q - p = r - q

Now, further given that

\rm \: \dfrac{a - x}{px} = \dfrac{a -y }{qy} = \dfrac{a - z}{rz} \\

can be further rewritten as

\rm \: \dfrac{ \dfrac{a}{x}  - 1}{p} = \dfrac{ \dfrac{a}{y}  -1}{q} = \dfrac{ \dfrac{a}{z}  - 1}{r}  -  -  - (1)\\

Consider,

\rm \: \dfrac{ \dfrac{a}{x}  - 1}{p} = \dfrac{ \dfrac{a}{y}  -1}{q} \\

can be rewritten as

\rm \: \dfrac{ \dfrac{a}{x}  - 1}{p} = \dfrac{1 -  \dfrac{a}{y}}{ - q} \\

Now, Using Addendo, we get

\rm \: \dfrac{ \dfrac{a}{x}  - 1}{p} = \dfrac{1 -  \dfrac{a}{y}}{ - q} = \dfrac{\dfrac{a}{x}  - 1 + 1 - \dfrac{a}{y} }{ p- q}  \\

\rm\implies \:\rm \: \dfrac{ \dfrac{a}{x}  - 1}{p}  = \dfrac{\dfrac{a}{x} - \dfrac{a}{y} }{ p- q} -  -  - (2)  \\

Now, Consider

\rm \: \dfrac{ \dfrac{a}{y}  -1}{q} = \dfrac{ \dfrac{a}{z}  - 1}{r} \\

can be rewritten as

\rm \: \dfrac{ \dfrac{a}{y}  -1}{q} = \dfrac{1 -  \dfrac{a}{z}}{ - r} \\

On applying Addendo, we get

\rm \: \dfrac{ \dfrac{a}{y}  -1}{q} = \dfrac{1 -  \dfrac{a}{z}}{ - r}  = \dfrac{\dfrac{a}{y}  - 1 + 1 - \dfrac{a}{z} }{q - r} \\

\rm\implies \:\rm \: \dfrac{ \dfrac{a}{y}  -1}{q} = \dfrac{\dfrac{a}{y} - \dfrac{a}{z} }{q - r}  -  -  - (3)\\

Now, From equation (1), (2) and (3), we concluded that

\rm \: \dfrac{ \dfrac{a}{x}  - \dfrac{a}{y} }{p - q} = \dfrac{\dfrac{a}{y} - \dfrac{a}{z} }{q - r}\\

can be further rewritten as

\rm \: \dfrac{ \dfrac{a}{x}  - \dfrac{a}{y} }{q - p} = \dfrac{\dfrac{a}{y} - \dfrac{a}{z} }{r - q}\\

\rm \: \dfrac{a}{x}  - \dfrac{a}{y}  = \dfrac{a}{y} - \dfrac{a}{z} \: \:  \:  \:  \:  \:   \:  \:  \:  \{ \because \: q - p = q - r \}  \\

\rm \: \dfrac{1}{x}  - \dfrac{1}{y}  = \dfrac{1}{y} - \dfrac{1}{z} \\

\rm\implies \:\rm \: \dfrac{1}{x}, \: \dfrac{1}{y},  \: \dfrac{1}{z} \: are \: in \:AP  \\

\rm\implies \:\rm \: x, \: y, \: z \: are \: in \:HP  \\

\rule{190pt}{2pt}

Remark :-

Addendo :-

\rm \: \dfrac{a}{b}  = \dfrac{c}{d}  \: \bf\implies \: \: \dfrac{a}{b}  = \dfrac{c}{d}  = \dfrac{a + b}{c + d}  \\

Additional Information :-

Alternendo :-

\rm \: \dfrac{a}{b}  = \dfrac{c}{d}  \: \bf\implies \: \: \dfrac{a}{c}  = \dfrac{b}{d} \\

Invertendo :-

\rm \: \dfrac{a}{b}  = \dfrac{c}{d}  \: \bf\implies \: \: \dfrac{b}{a}  = \dfrac{d}{c} \\

Componendo :-

\rm \: \dfrac{a}{b}  = \dfrac{c}{d}  \: \bf\implies \: \: \dfrac{a + b}{b}  = \dfrac{c + d}{d} \\

Dividendo :-

\rm \: \dfrac{a}{b}  = \dfrac{c}{d}  \: \bf\implies \: \: \dfrac{a  -  b}{b}  = \dfrac{c  -  d}{d} \\

Componendo and Dividendo :-

\rm \: \dfrac{a}{b}  = \dfrac{c}{d}  \: \bf\implies \: \: \dfrac{a + b}{a - b}  = \dfrac{c + d}{c - d} \\

Answered by maheshtalpada412
13

Answer:

Question :-

Suppose a is a fixed real number such that \displaystyle \rm \frac{a - x}{px} = \frac{a -y }{qy} = \frac{a - z}{rz}

If p, q, r are in AP, prove that x, y, z are in HP

 \rule{300pt}{0.1pt}

\color{darkcyan} \underline{ \begin{array}{  || |l| ||  }  \hline  \color{magenta} \\ \hline \boxed{ \text{ \tt \: Solution:-}  }  \end{array}}

 \rule{300pt}{0.1pt}

 \text{\( \rm \because \quad p , q , r \) are in A.P.,}

 \rm\therefore \quad q - p = r - q

 \text{ \( \rm \Rightarrow \quad p - q = q - r = k \) (Let)}

 \text{ Given, \( \displaystyle\rm  \frac{a-x}{p x}=\frac{a-y}{q y}=\frac{a-z}{r z} \)}

\[ \begin{array}{l}  \displaystyle\rm\Rightarrow \frac{\frac{ a }{ x }-1}{ p }=\frac{\frac{ a }{ y }-1}{ q }=\frac{\frac{ a }{ z }-1}{ r } \\ \\  \displaystyle\rm\Rightarrow \frac{\left(\dfrac{ a }{ x }-1\right)-\left(\dfrac{ a }{ y }-1\right)}{ p - q }=\frac{\left(\dfrac{ a }{ y }-1\right)-\left(\dfrac{ a }{ z }-1\right)}{ q - r }  \\  \\ \text{ (by law of proportion)} \end{array} \]

\[ \begin{array}{l} \\  \displaystyle\rm  \Rightarrow \frac{\frac{ a }{ x }-\frac{ a }{ y }}{ k }=\frac{\frac{ a }{ y }-\frac{ a }{ z }}{ k } \:  \:  \:  \:  \:  \:  \qquad \text { (from (i)) } \\\\  \displaystyle\rm \Rightarrow a \left(\frac{1}{ x }-\frac{1}{ y }\right)= a \left(\frac{1}{ y }-\frac{1}{ z }\right) \\\\  \displaystyle\rm \Rightarrow \frac{1}{ x }-\frac{1}{ y }=\frac{1}{ y }-\frac{1}{ z } \\ \\  \displaystyle\rm\therefore \frac{2}{ y }=\frac{1}{ x }+\frac{1}{ z } \\\\  \displaystyle\rm \therefore \frac{1}{ x }, \frac{1}{ y }, \frac{1}{ z } \text { are in A. P. } \end{array} \]

Hence x, y, z are in H.P.

Similar questions