Suppose a1, a2. . . , an are n positive real numbers with a1a2 . . . an = 1.
prove that:
(1+a1)*(1+a2)...*(1+an) >= 2^n
I've tried using the arithmetic mean value against the geometric mean value with no success .
Any hint / solution / idea would be greatly appreaciated
Answers
Step-by-step explanation:
∵ a₁ , a₂ , a₃ , ....... an are n positive real numbers
∴ we have to use AM ≥ GM
Where AM is Arithmetic mean and GM is Geometric mean.
Now, AM of a₁ , a₂, a₃, a₄, ........., an = (a₁ + a₂ + a₃ + ..... + an)/n
GM of a₁ , a₂, a₃, ........, an = (a₁.a₂.a₃.a₄....an)^(1/n)
∴ (a₁ + a₂ + a₃ + ..... + an)/n ≥ (a₁.a₂.a₃.a₄....an)^(1/n)
∵ a₁.a₂.a₃.a₄......an = 1
So, (a₁ + a₂ + a₃ + ..... + an)/n ≥ 1
⇒a₁ + a₂ + a₃+ ...... + an ≥ n
minimum value of a₁ + a₂ + a₃+ ...... + an = n
Now, take , (1 +a₁), (1 + a₂), (1 + a₃) ....... (1 + an)
AM = {(1 + a₁) + (1 + a₂) + (1 + a₃) + ..... + (1 + an)}/n
GM = {(1 + a₁)(1 + a₂)(1 + a₃)(1 + a₄)......(1 + an)}^{1/n}
Now, AM ≥ GM
{(1 + a₁) + (1 + a₂) + (1 + a₃) + ..... + (1 + an)}/n ≥ {(1 + a₁)(1 + a₂)(1 + a₃)(1 + a₄)......(1 + an)}^{1/n}
⇒{(1 + 1 + 1 + 1 ....+ n times) + (a₁ + a₂ + a₃ + .....+ an)}/n ≥ {(1 + a₁)(1 + a₂)(1 + a₃)(1 + a₄)......(1 + an)}^{1/n}
⇒(n + n)/n ≥{ (1 + a₁)(1 + a₂)(1 + a₃)(1 + a₄)......(1 + an)}^{1/n}
⇒2 ≥ {(1 + a₁)(1 + a₂)(1 + a₃)(1 + a₄)......(1 + an)}^{1/n}
∴ (1 + a₁)(1 + a₂)(1 + a₃)(1 + a₄)......(1 + an) ≤ 2ⁿ
Hence, minimum value of (1 + a₁)(1 + a₂)(1 + a₃)(1 + a₄)......(1 + an) = 2ⁿ
HOPE YOU LIKE IT