Math, asked by Garvit1406, 1 month ago

Suppose alpha and beta are greater than zero. Alpha +2 beta is equal to \frac{\pi }{2} then tan (\alpha +\beta) -2tan\alpha -tan\beta is equal to

Attachments:

Answers

Answered by senboni123456
3

Step-by-step explanation:

We have,

 \alpha  + 2 \beta  =   \frac{\pi}{2}  \\

  \implies\alpha  +  \beta  =   \frac{\pi}{2}  -  \beta  \\

  \implies \tan( \alpha  +  \beta)  =  \tan \bigg(  \frac{\pi}{2}  -  \beta  \bigg) \\

  \implies \tan( \alpha  +  \beta)  =  \cot(   \beta  ) \\

Now,

  \implies \tan( \alpha  +  \beta) - 2 \tan( \alpha )    - \tan( \beta )  =  \cot(   \beta  ) - 2 \tan( \alpha ) -   \tan( \beta )   \\

  \implies \tan( \alpha  +  \beta) - 2 \tan( \alpha )    - \tan( \beta )  =  \cot \bigg(    \frac{\pi}{4} -  \frac{ \alpha }{2}     \bigg) - 2 \tan( \alpha ) -   \tan \bigg(  \frac{\pi}{4}   -  \frac{ \alpha }{2}  \bigg)   \\

  \implies \tan( \alpha  +  \beta) - 2 \tan( \alpha )    - \tan( \beta )  = \frac{1 +  \tan( \frac{ \alpha }{2} ) }{1 -  \tan( \frac{ \alpha }{2} ) }  - 2 \tan( \alpha ) -    \frac{1 -  \tan( \frac{ \alpha }{2} ) }{1 +  \tan( \frac{ \alpha }{2} ) }    \\

  \implies \tan( \alpha  +  \beta) - 2 \tan( \alpha )    - \tan( \beta )  = \frac{1 +  \tan( \frac{ \alpha }{2} ) }{1 -  \tan( \frac{ \alpha }{2} ) }  -    \frac{1 -  \tan( \frac{ \alpha }{2} ) }{1 +  \tan( \frac{ \alpha }{2} ) }   - 2 \tan( \alpha )   \\

  \implies \tan( \alpha  +  \beta) - 2 \tan( \alpha )    - \tan( \beta )  = \frac{ \{1 +  \tan( \frac{ \alpha }{2} ) \}^{2} -  \{1 -  \tan( \frac{ \alpha }{2} )  \}^{2}   }{ \{1 -  \tan( \frac{ \alpha }{2} ) \} \{ 1 +  \tan( \frac{ \alpha }{2} ) \} }    - 2 \tan( \alpha )   \\

  \implies \tan( \alpha  +  \beta) - 2 \tan( \alpha )    - \tan( \beta )  = \frac{  4 \tan( \frac{ \alpha }{2} )   }{ 1 -  \tan^{2} ( \frac{ \alpha }{2} )}    - 2 \tan( \alpha )   \\

  \implies \tan( \alpha  +  \beta) - 2 \tan( \alpha )    - \tan( \beta )  =2. \frac{  2 \tan( \frac{ \alpha }{2} )   }{ 1 -  \tan^{2} ( \frac{ \alpha }{2} )}    - 2 \tan( \alpha )   \\

  \implies \tan( \alpha  +  \beta) - 2 \tan( \alpha )    - \tan( \beta )  =2   \tan(  \alpha  )       - 2 \tan( \alpha )   \\

   \tt \purple{\implies \tan( \alpha  +  \beta) - 2 \tan( \alpha )    - \tan( \beta )  =0}  \\

Answered by mathdude500
2

\large\underline{\sf{Solution-}}

Given that,

\rm :\longmapsto\: \alpha , \beta  > 0

and

\rm :\longmapsto\: \alpha  + 2 \beta  = \dfrac{\pi}{2}

\bf\implies \: \alpha  +  \beta  = \dfrac{\pi}{2}  -  \beta  -  -  - (1)

Now, Consider,

\rm :\longmapsto\:tan( \alpha  +  \beta)  \:  - 2tan \alpha  - tan\beta

\rm \:  =  \: tan\bigg[\dfrac{\pi}{2} - \beta  \bigg] - 2tan\alpha   - tan\beta

\rm \:  =  \:cot\beta- 2tan\alpha   - tan\beta

\rm \:  =  \:cot\beta   - tan\beta  - 2tan\alpha

\rm \:  =  \:\dfrac{1}{tan\beta }    - tan\beta  - 2tan\alpha

\rm \:  =  \:\dfrac{1 -  {tan}^{2}\beta  }{tan\beta }  - 2tan\alpha

\rm \:  =  \dfrac{1}{\dfrac{tan\beta }{1 -  {tan}^{2} \beta } } - 2tan\alpha

can be rewritten as

\rm \:  =  \dfrac{2}{\dfrac{2tan\beta }{1 -  {tan}^{2} \beta } } - 2tan\alpha

\rm \:  =  \dfrac{2}{tan2\beta } - 2tan\alpha

\rm \:  =  \: 2cot2\beta  - 2tan\alpha

\rm \:  =  \: 2cot\bigg[\dfrac{\pi}{2} - \alpha   \bigg]  - 2tan\alpha

\rm \:  =  \: 2tan\alpha    - 2tan\alpha

\rm \:  =  \: 0

Hence,

 \red{\rm :\longmapsto\:\red{ \boxed{ \sf{ \:tan( \alpha  +  \beta)  \:  - 2tan \alpha  - tan\beta  = 0}}}}

  • So, option (a) is correct

Formula Used :-

\red{ \boxed{ \sf{ \:tan\bigg[\dfrac{\pi}{2} - x \bigg] = cotx}}}

\red{ \boxed{ \sf{ \:cot\bigg[\dfrac{\pi}{2} - x \bigg] = tanx}}}

\green{ \boxed{ \sf{ \:tan2x =  \frac{2tanx}{1 -  {tan}^{2} x} }}}

Similar questions