Math, asked by rafiulalamsadab69776, 3 days ago

Suppose f(x) = 3x-5. Describe how the graph of g compares with the graph of f. g(x)= f(x+7)​

Answers

Answered by ry992015
1

Answer:

suppose f(x)=3x+5. describe how the graph of each function compares to f. 1) g(x)=f(x)+12 2) h(x)=f(x)-7 3) g(x)=f(x=8) 4) h(x)=f(x-14) 5) g(x)=4f(x) 6) g(x)=f(5x)

Answer · 0 votes

Function transformation involves changing the form of a functionThe function is given as:\mathbf{f(x) = 3x + 5}1. g(x) = f(x) + 12This gives\mathbf{g(x) = 3x + 5 + 12}\mathbf{g(x) = 3x + 17}g(x) = f(x) + 12 relates to f(x) by shifting f(x) 12 units up2. h(x) = f(x) - 7This gives\mathbf{h(x) = 3x + 5 - 7}\mathbf{h(x) = 3x - 2}h(x) = f(x) - 7 relates to f(x) by shifting f(x) 7 units down3. g(x) = f(x + 8)This gives\mathbf{g(x) = 3(x + 8) + 5}\mathbf{g(x) = 3x + 24 + 5}\mathbf{g(x) = 3x +29}g(x) = f(x + 8) relates to f(x) by shifting f(x) 8 units left4. h(x) = f(x - 14)This gives\mathbf{h(x) = 3(x - 14) + 5}\mathbf{h(x) = 3x - 42 + 5}\mathbf{h(x) = 3x -37}h(x) = f(x - 14) relates to f(x) by shifting f(x) 14 units right5. g(x) = 4f(x)This gives\mathbf{g(x) = 4(3x + 5)}\mathbf{g(x) = 12x + 20}g(x) = 4f(x) relates to f(x) by vertically stretching f(x)…..

Suppose f(x) = 3x + 5. Describe how the graph of g(x) = f(x) + 12 compares to f

Answer · 1 vote

Answer:12Step-by-step explanation:i know

Similar questions