Math, asked by lalitaistwal4212, 2 months ago

Suppose f(x) is the derivative of g(x) and g(x)is the derivative of h(x).If h(x) = asin x + bcos x + c then f(x) + h(x) =

Answers

Answered by mathdude500
5

\large\underline{\sf{Solution-}}

Given that,

☆ f(x) is derivative of g(x)

\bf\implies \:f(x) = g'(x) -  -  - (1)

Again,

Given that

☆ g(x) is the derivative of h(x)

\bf\implies \:g(x) = h'(x) -  -  - (2)

☆ Substituting equation (2) in equation (1), we get

\bf\implies \:f(x) = h''(x) -  -  - (3)

Now,

Given that,

\rm :\longmapsto\:h(x) = a \: sinx \:  +  \: b \: cosx \:  +  \: c

☆ On differentiating both sides, w. r. t. x, we get

\rm :\longmapsto\:\dfrac{d}{dx}h(x) = \dfrac{d}{dx}(a \: sinx \:  +  \: b \: cosx \:  +  \: c)

 \because \green{\boxed{ \bf{ \:\dfrac{d}{dx}sinx = cosx}}} \: and \: \green{\boxed{ \bf{ \:\dfrac{d}{dx}cosx =  - sinx}}}

\rm :\longmapsto\:h'(x) = a \: cosx \:  -  \: b \: sinx

☆ On differentiating both sides, w. r. t. x, we get

\rm :\longmapsto\:\dfrac{d}{dx}h'(x) = \dfrac{d}{dx}(a \: cosx \:  -  \: b \: sinx)

\bf :\longmapsto\:h''(x) =  -  \: a \: sinx \:  -  \: b \: cosx -  -  - (4)

Now,

Consider,

\bf :\longmapsto\:f(x) + h(x)

 \rm \:  \:  =  \: h''(x) \:  +  \: h(x)

 \:  \:  \:  \: \green{\boxed{ \bf{ \: \because \: using \: (3)}}}

 \rm \:  \:  =  \:  - asinx \:  -  \: bcosx \:  +  \: asinx \:  +  \: bcosx \: +  \: c

 \rm \:  \:  =  \: c

Hence,

\bf :\longmapsto\:f(x) + h(x) = c

Similar questions