Math, asked by yuvesh, 19 days ago

Suppose f(x) = ln(x) + 3 and g(x) = e^3x. Find (f o g)(x) and (g o f )(x) in the
simplest form.

Answers

Answered by mathdude500
45

\large\underline{\sf{Solution-}}

Given that,

\rm \: f(x) = ln(x) + 3

and

\rm \: g(x) =  {e}^{3x}

Now, Consider

\rm \:  fog(x)

\rm \:  =  \: f[g(x)]

\rm \:  =  \: f({e}^{3x})

\rm \:  =  \: ln({e}^{3x}) + 3

We know,

\boxed{\tt{  \:  \: ln({e}^{x}) = x \:  \: }} \\

So, using this result, we get

\rm \:  =  \: 3x + 3

\rm \:  =  \: 3(x + 1)

Hence,

\rm\implies \:\rm \:  fog(x) = 3(x + 1) \\

Now, Consider

\rm \: gof(x)

\rm \:  =  \: g[f(x)]

\rm \:  =  \: g(lnx + 3)

\rm \:  =  \: {e}^{3(ln(x) + 3)}

\rm \:  =  \: {e}^{3ln(x) + 9}

\rm \:  =  \: {e}^{3ln(x)} \times {e}^{9}

We know,

\boxed{\tt{  \: y \: ln(x) = ln ({x}^{y}) \: }} \\

So, using this, we get

\rm \:  =  \: {e}^{ln( {x}^{3} )} \times {e}^{9}

We know

\boxed{\tt{  \:  {e}^{ln(x)} = x \: }} \\

So, using this, we get

\rm \:  =  \:  {x}^{3} \: {e}^{9} \\

Hence,

\rm\implies \:\rm \:gof(x)  =  \:  {x}^{3} \: {e}^{9} \\

Thus,

\rm\implies \:\rm \:  fog(x) = 3(x + 1) \\

and

\rm\implies \:\rm \:gof(x)  =  \:  {x}^{3} \: {e}^{9} \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Basic Concept

f o g is a composite function which means g(x) function is in f(x).

g o f is a composite function which means f(x) function is in g(x).

Answered by jaswasri2006
25

Refer the Given Attachment

Attachments:
Similar questions