Suppose p, q, r are positive integer such that 6^p+2^p+q.3^r+2^q=332 Then sum of possible
values of p is
Answers
Given :- p, q, r are positive integer such that 6^p+2^(p+q) •3^r+2^q = 332 .
To Find :- sum of possible values of p is ?
Answer :-
→ 6^p + 2^(p+q) •3^r + 2^q = 332 .
→ 2^(p+q) •3^r + 2^q = 332 - 6^p
possible values of p :-
- p = 1 => 6¹ = 6 => Possible
- p = 2 => 6² = 36 => Possible .
- p = 3 => 6³ = 216 => Possible .
- p = 4 => 6⁴ = 1296 => Not possible , since p, q, r are positive integer => 336 - 1296 = - ve .
taking p = 1,
→ 2^(1 + q) * 3^r + 2^q = 332 - 6
→ 2*2^q * 3^r + 2^q = 326
→ 2^q(2*3^r + 1) = 326
using hit and trial ,
→ 2¹(2*3⁴ + 1) = 326
→ 2(162 + 1) = 326
→ 2 * 163 = 326
→ 326 = 326 .
so, when p = 1 => q = 1, r = 4 . { All values are + ve integers.}
taking p = 2,
→ 2^(2+q) •3^r + 2^q = 332 - 6²
→ 4*2^q * 3^r + 2^q = 332 - 36
→ 2^q(4*3^r + 1) = 296
using hit and trial,
→ 2³(4*3² + 1) = 296
→ 4*9 + 1 = 296/8
→ 37 = 37 .
so, when p = 2 => q = 3, r = 2 . { All values are + ve integers.}
taking p = 3,
→ 2^(3+q) •3^r + 2^q = 332 - 6³
→ 8*2^q * 3^r + 2^q = 332 - 216
→ 2^q(8*3^r + 1) = 116
put, q = 1,
→ 8*3^r + 1 = 116/2
→ 8*3^r = 58 - 1
→ 3^r = 57/8
→ r ≠ positive integer .
put q = 2,
→ 8*3^r + 1 = 116/4
→ 8*3^r = 29 - 1
→ 3^r = 28/8
→ r ≠ positive integer .
at p = 3 , r will not be a positive integer .
therefore,
→ sum of possible values of p = (1 + 2) = 3 (Ans.)
Learn more :-
let a and b positive integers such that 90 less than a+b less than 99 and 0.9 less than a/b less than 0.91. Find ab/46
p...
https://brainly.in/question/40043888
Answer:
Given :- p, q, r are positive integer such that 6^p+2^(p+q) •3^r+2^q = 332 .
To Find :- sum of possible values of p is ?
Answer :-
→ 6^p + 2^(p+q) •3^r + 2^q = 332 .
→ 2^(p+q) •3^r + 2^q = 332 - 6^p
possible values of p :-
p = 1 => 6¹ = 6 => Possible
p = 2 => 6² = 36 => Possible .
p = 3 => 6³ = 216 => Possible .
p = 4 => 6⁴ = 1296 => Not possible , since p, q, r are positive integer => 336 - 1296 = - ve .
taking p = 1,
→ 2^(1 + q) * 3^r + 2^q = 332 - 6
→ 2*2^q * 3^r + 2^q = 326
→ 2^q(2*3^r + 1) = 326
using hit and trial ,
→ 2¹(2*3⁴ + 1) = 326
→ 2(162 + 1) = 326
→ 2 * 163 = 326
→ 326 = 326 .
so, when p = 1 => q = 1, r = 4 . { All values are + ve integers.}
taking p = 2,
→ 2^(2+q) •3^r + 2^q = 332 - 6²
→ 4*2^q * 3^r + 2^q = 332 - 36
→ 2^q(4*3^r + 1) = 296
using hit and trial,
→ 2³(4*3² + 1) = 296
→ 4*9 + 1 = 296/8
→ 37 = 37 .
so, when p = 2 => q = 3, r = 2 . { All values are + ve integers.}
taking p = 3,
→ 2^(3+q) •3^r + 2^q = 332 - 6³
→ 8*2^q * 3^r + 2^q = 332 - 216
→ 2^q(8*3^r + 1) = 116
put, q = 1,
→ 8*3^r + 1 = 116/2
→ 8*3^r = 58 - 1
→ 3^r = 57/8
→ r ≠ positive integer .
put q = 2,
→ 8*3^r + 1 = 116/4
→ 8*3^r = 29 - 1
→ 3^r = 28/8
→ r ≠ positive integer .
at p = 3 , r will not be a positive integer .
therefore,
→ sum of possible values of p = (1 + 2) = 3 (Ans.)