Math, asked by jessica9773, 1 month ago

Suppose that f(x) = 18e^x+7ln(x). Find f'(3).​

Answers

Answered by mathdude500
6

\large\underline{\sf{Solution-}}

Given that

\rm :\longmapsto\:f(x) = 18 {e}^{x} + 7ln \: x

On differentiating both sides w. r. t. x, we get

\rm :\longmapsto\:\dfrac{d}{dx} f(x) =\dfrac{d}{dx}( 18 {e}^{x} + 7ln \: x)

\rm :\longmapsto\:f'(x) =\dfrac{d}{dx}18 {e}^{x} + \dfrac{d}{dx}7 \: ln \: x

 \:  \:  \:  \:  \:  \:  \:  \:  \: \red{\bigg \{ \because \: \dfrac{d}{dx}u + v = \dfrac{d}{dx}u + \dfrac{d}{dx}v\bigg \}}

\rm :\longmapsto\:f'(x) =18\dfrac{d}{dx} {e}^{x} +7 \dfrac{d}{dx}\: ln \: x

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \red{\bigg \{ \because \: \dfrac{d}{dx}k \: f(x) = k \: \dfrac{d}{dx}f(x)\bigg \}}

\rm :\longmapsto\:f'(x) = 18 {e}^{x}  \:  +  \: 7 \times \dfrac{1}{x}

\red{\bigg \{ \because \:\dfrac{d}{dx} {e}^{x} =  {e}^{x} \:  \:  \:  \: and  \:  \:  \: \: \dfrac{d}{dx}lnx =  \dfrac{1}{x}  \bigg \}}

\rm :\longmapsto\:f'(x) = 18 {e}^{x}  \:  +  \: \dfrac{7}{x}

Thus,

\rm :\longmapsto\:f'(3) = 18 {e}^{3}  \:  +  \: \dfrac{7}{3}

Additional Information :-

\rm :\longmapsto\:\dfrac{d}{dx}x = 1

\rm :\longmapsto\:\dfrac{d}{dx}k = 0

\rm :\longmapsto\:\dfrac{d}{dx}sinx = cosx

\rm :\longmapsto\:\dfrac{d}{dx}cosx =  -  \: sinx

\rm :\longmapsto\:\dfrac{d}{dx}tanx =   {sec}^{2} x

\rm :\longmapsto\:\dfrac{d}{dx}cotx =   { -  \: cosec}^{2} x

\rm :\longmapsto\:\dfrac{d}{dx}secx = secx \: tanx

\rm :\longmapsto\:\dfrac{d}{dx}cosecx =  -  \: cosecx \: cotx

Answered by Anonymous
2

Answer:

f'(3) = 18e^3 + 7/3 = 363.87

Step-by-step explanation:

f(x) = 18*exp(x) + 7ln(x)

f'(x) = 18*{exp(x)}' + 7{ln(x)}'

f'(x) = 18*exp(x) + 7/x

f'(3) = 18*exp(3) + 7/3

f'(3) = 18*e^3 + 7/3 = 363.87

Prerequisites :

  • (a+b)' = a' + b'
  • {exp(x)}' = exp(x)
  • {ln(x)}' = 1/x
Similar questions