Math, asked by godmirage650, 4 days ago

Suppose that it is known that the number of items produced in a factory during a week is a random variable with mean 50,

Answers

Answered by rjha88331
0

Answer:

EXPLANATION.

\sf \implies \displaystyle a^{3} (l + m)^{3} - \bigg( \dfrac{al}{3} + \dfrac{2am}{3} \bigg)^{3} - \bigg(\frac{2al}{3} + \dfrac{am}{3} \bigg)^{3}⟹a

3

(l+m)

3

−(

3

al

+

3

2am

)

3

−(

3

2al

+

3

am

)

3

As we know that,

We can write equation as,

\sf \implies \displaystyle a^{3} (l + m)^{3} - \bigg(\frac{a}{3} \bigg)^{3} (l + 2m)^{3} - \bigg(\dfrac{a}{3} \bigg)^{3} (2l + m)^{3}⟹a

3

(l+m)

3

−(

3

a

)

3

(l+2m)

3

−(

3

a

)

3

(2l+m)

3

\sf \implies \displaystyle a^{3} (l + m)^{3} - \bigg(\frac{a}{3} \bigg)^{3} \bigg[ (l + 2m)^{3} + (2l + m)^{3} \bigg]⟹a

3

(l+m)

3

−(

3

a

)

3

[(l+2m)

3

+(2l+m)

3

]

As we know that,

Formula of :

⇒ (x + y)³ = x³ + 3x²y + 3xy² + y³.

Using this formula in the equation, we get.

\sf \implies \displaystyle a^{3} (l + m)^{3} - \bigg(\frac{a}{3} \bigg)^{3} \bigg[ (l^{3} + 6l^{2}m + 12lm^{2} + 8m^{3}) + (8l^{3} + 12l^{2}m + 6lm^{2} + m^{3} ) \bigg]⟹a

3

(l+m)

3

−(

3

a

)

3

[(l

3

+6l

2

m+12lm

2

+8m

3

)+(8l

3

+12l

2

m+6lm

2

+m

3

)]

\sf \implies \displaystyle a^{3} (l + m)^{3} - \bigg(\frac{a}{3} \bigg)^{3} \bigg[ 9l^{3} + 18l^{2}m + 18lm^{2} + 9m^{3} \bigg]⟹a

3

(l+m)

3

−(

3

a

)

3

[9l

3

+18l

2

m+18lm

2

+9m

3

]

\sf \implies \displaystyle a^{3} (l + m)^{3} - \bigg(\frac{a}{3} \bigg)^{3} \times (9)\bigg[ l^{3} + 2l^{2}m + 2lm^{2} + m^{3} \bigg]⟹a

3

(l+m)

3

−(

3

a

)

3

×(9)[l

3

+2l

2

m+2lm

2

+m

3

]

\sf \implies \displaystyle a^{3} (l + m)^{3} - \bigg(\frac{a^{3} }{27} \bigg) \times (9)\bigg[ l^{3} + 2l^{2}m + 2lm^{2} + m^{3} \bigg]⟹a

3

(l+m)

3

−(

27

a

3

)×(9)[l

3

+2l

2

m+2lm

2

+m

3

]

\sf \implies \displaystyle a^{3} (l + m)^{3} - \bigg(\frac{a^{3} }{3} \bigg) \bigg[ l^{3} + 2l^{2}m + 2lm^{2} + m^{3} \bigg]⟹a

3

(l+m)

3

−(

3

a

3

)[l

3

+2l

2

m+2lm

2

+m

3

]

\sf \implies \displaystyle \bigg( \frac{a^{3} }{3} \bigg) \bigg[ 3(l + m)^{3} - (l^{3} + m^{3} + 2l^{2} + 2lm^{2} ) \bigg]⟹(

3

a

3

)[3(l+m)

3

−(l

3

+m

3

+2l

2

+2lm

2

)]

\sf \implies \displaystyle \bigg( \frac{a^{3} }{3} \bigg) \bigg[ 3(l^{3} + m^{3} + 3l^{2}m + 3lm^{2} ) - (l^{3} + m^{3} + 2l^{2} + 2lm^{2} ) \bigg]⟹(

3

a

3

)[3(l

3

+m

3

+3l

2

m+3lm

2

)−(l

3

+m

3

+2l

2

+2lm

2

)]

\sf \implies \displaystyle \bigg( \frac{a^{3} }{3} \bigg) \bigg[ (3l^{3} + 3m^{3} + 9l^{2} m + 9lm^{2}) - (l^{3}+ m^{3} + 2l^{2} + 2lm^{2} ) \bigg]⟹(

3

a

3

)[(3l

3

+3m

3

+9l

2

m+9lm

2

)−(l

3

+m

3

+2l

2

+2lm

2

)]

\sf \implies \displaystyle \bigg( \frac{a^{3} }{3} \bigg) \bigg[ 2l^{3} + 2m^{3} + 7l^{2} m + 7lm^{2} \bigg]⟹(

3

a

3

)[2l

3

+2m

3

+7l

2

m+7lm

2

]

\sf \implies \displaystyle \bigg( \frac{a^{3} }{3} \bigg) \bigg[ (l^{3} + m^{3} + 3l^{2} m + 3lm^{2} ) + (l^{3} + m^{3} + 4l^{2}m + 4lm^{2} ) \bigg]⟹(

3

a

3

)[(l

3

+m

3

+3l

2

m+3lm

2

)+(l

3

+m

3

+4l

2

m+4lm

2

)]

\sf \implies \displaystyle \bigg( \frac{a^{3} }{3} \bigg) \bigg[2 (l + m)^{3} + lm(l + m) \bigg]⟹(

3

a

3

)[2(l+m)

3

+lm(l+m)]

Answered by shubhamkh9560
0

Answer:

Step-by-step explanation:

Suppose that it is known that the number of items produced in a factory during a week is a random variable with mean 5

Similar questions