Math, asked by devmanikoth, 9 months ago

Suppose that P (A/B) = 0.7, P(A) = 0.5 and P(B) = 0.2 then P(B/A) is​

Answers

Answered by fayazmd4u
9

Answer:

we know that P(B/A)=P(A/B)P(B)/P(A)

=(0.7)(0.2)/0.5

=0.14/0.5=0.28

Answered by dualadmire
0

The value of  P(B/A) is 0.28.

Given: P(A/B) = 0.7, P(A) = 0.5 and P(B) = 0.2

To Find: The value of  P(B/A).

Solution:

  • We know that the formula of P(A/B) can be given by the formula,

        P(A/B) = P (A ∩ B) / P (B)                                ...(1)

and   P(B/A) = P (A ∩ B) / P (A)                                ...(2)

Coming to the numerical, we have;

P(A/B) = 0.7, P(A) = 0.5 and P(B) = 0.2. So we need to find the value of P(A∩B). Putting respective values in (1), we get;

          P(A/B) = P (A ∩ B) / P (B)

    ⇒   0.7 =  P (A ∩ B) / 0.2

    ⇒   P (A ∩ B)  = 0.7 × 0.2

    ⇒   P (A ∩ B)  = 0.14

Now, from (2), we have;

            P(B/A) = P (A ∩ B) / P (A)      

Putting respective values, we get,          

       ⇒  P(B/A) = 0.14 / 0.5

       ⇒  P(B/A) = 0.28

Hence, the value of  P(B/A) is 0.28.

#SPJ2        

Similar questions