Suppose that we randomly drop n^(3/2) balls into n bins,give an upper bound on the expectation of the maximum number of balls in any bin
Answers
Answered by
1
☆☆ranshsangwan☆☆
Let XiXi be the # of balls in the iith bin and X=max{X1,X2,⋯,Xn}X=max{X1,X2,⋯,Xn}. We have
E(X)=∑i≥1Pr(X≥i)≤∑i>2n1/2+9lnnPr(X≥i)+2n1/2+9lnnE(X)=∑i≥1Pr(X≥i)≤∑i>2n1/2+9lnnPr(X≥i)+2n1/2+9lnn
and for i>2n1/2+9lnni>2n1/2+9lnn,
Pr(X≥i)=Pr(X1≥i ∨ X2≥i ∨ ⋯ ∨ Xn≥i)≤∑j=1nPr(Xj≥i)≤∑j=1nexp(−i−n1/23)≤∑j=1nexp(−3lnn)=1n2Pr(X≥i)=Pr(X1≥i ∨ X2≥i ∨ ⋯ ∨ Xn≥i)≤∑j=1nPr(Xj≥i)≤∑j=1nexp(−i−n1/23)≤∑j=1nexp(−3lnn)=1n2
where
Xj∼Binomial (n3/2,1n)Xj∼Binomial (n3/2,1n) and E(Xj)=n−−√E(Xj)=n;
the first inequality uses the union bound;
the second inequality uses a loose form of Chernoff bound:
Pr(X≥(1+δ)μ)≤exp(−δμ3)for δ>1Pr(X≥(1+δ)μ)≤exp(−δμ3)for δ>1
Therefore,
∑i>2n1/2+9lnnPr(X≥i)≤n3/2⋅1n2=1n−−√∑i>2n1/2+9lnnPr(X≥i)≤n3/2⋅1n2=1n
implying an upper bound
E(X)≤2n−−√+1n−−√+9lnn
Let XiXi be the # of balls in the iith bin and X=max{X1,X2,⋯,Xn}X=max{X1,X2,⋯,Xn}. We have
E(X)=∑i≥1Pr(X≥i)≤∑i>2n1/2+9lnnPr(X≥i)+2n1/2+9lnnE(X)=∑i≥1Pr(X≥i)≤∑i>2n1/2+9lnnPr(X≥i)+2n1/2+9lnn
and for i>2n1/2+9lnni>2n1/2+9lnn,
Pr(X≥i)=Pr(X1≥i ∨ X2≥i ∨ ⋯ ∨ Xn≥i)≤∑j=1nPr(Xj≥i)≤∑j=1nexp(−i−n1/23)≤∑j=1nexp(−3lnn)=1n2Pr(X≥i)=Pr(X1≥i ∨ X2≥i ∨ ⋯ ∨ Xn≥i)≤∑j=1nPr(Xj≥i)≤∑j=1nexp(−i−n1/23)≤∑j=1nexp(−3lnn)=1n2
where
Xj∼Binomial (n3/2,1n)Xj∼Binomial (n3/2,1n) and E(Xj)=n−−√E(Xj)=n;
the first inequality uses the union bound;
the second inequality uses a loose form of Chernoff bound:
Pr(X≥(1+δ)μ)≤exp(−δμ3)for δ>1Pr(X≥(1+δ)μ)≤exp(−δμ3)for δ>1
Therefore,
∑i>2n1/2+9lnnPr(X≥i)≤n3/2⋅1n2=1n−−√∑i>2n1/2+9lnnPr(X≥i)≤n3/2⋅1n2=1n
implying an upper bound
E(X)≤2n−−√+1n−−√+9lnn
Similar questions