Math, asked by achinthya765, 11 months ago

suppose theta satisfies the equation sin theta=1/tan theta. find the value of cos theta where theta lies in the first quadrant .

Answers

Answered by Hiteshbehera74
6

 \cos theta =  \frac{1.3}{2}

Attachments:
Answered by guptasingh4564
2

Therefore, cos\theta value is 0.618

Step-by-step explanation:

Given;

sin\theta=\frac{1}{tan\theta} then cos\theta=? where \theta lies in the first quadrant.

sin\theta=\frac{1}{tan\theta}

sin\theta=\frac{1}{\frac{sin\theta}{cos\theta} }  (where tan\theta=\frac{sin\theta}{cos\theta})

sin\theta=\frac{cos\theta}{sin\theta}

sin^{2} \theta=cos\theta

(1-cos^{2} \theta)=cos\theta (where sin^{2} \theta+cos^{2} \theta=1)

cos^{2}\theta+cos\theta=1

cos^{2}\theta+2\times \frac{1}{2}\times cos\theta+\frac{1}{4} =1+\frac{1}{4} (by adding \frac{1}{4} on both sides)

(cos\theta +\frac{1}{2})^{2} =\frac{5}{4}

cos\theta +\frac{1}{2} =\pm\frac{\sqrt{5}}{2}

cos\theta=-\frac{1}{2} \pm\frac{\sqrt{5}}{2}

∵ In the first quadrant  cos\theta is positive.

So,

cos\theta=-\frac{1}{2} +\frac{\sqrt{5}}{2}

cos\theta=\frac{-1+\sqrt{5} }{2}

cos\theta=0.618

cos\theta value is 0.618

Similar questions