Math, asked by happysoni328, 1 year ago

Surface area of a tunnel is 550 m². The tunnel is a 25 m long cylinder. Find the diameter of the
tunnel.​

Answers

Answered by BrainlyKing5
26

Answer :

\boxed{\boxed{\mathsf{Diameter \: = \: 7m}}}

Step-by-step Explanation :

Given :

  • Surface area of a tunnel is 550 m².
  • Length of tunnel = 25m

To find :

  • The Diameter of the tunnel .

Solution :

Now according to question,

Now we know that,

\boxed{\bigstar\: \mathsf{Curved \: Surface\: area\: of \: cylinder = 2 \pi r h}}

Where here,

\mathsf{\longrightarrow \: Curved \: Surface \: area \: = 550m^2}

\mathsf{\longrightarrow \: r = radius\: = To \: find }

\mathsf{\longrightarrow \: h = height \: \longrightarrow \:Length = 25m }

\mathsf{\longrightarrow \: And \: taking \: \pi = \dfrac{22}{7}}

We have,

\mathsf{\longrightarrow \: 550 m^2 = 2 \times \dfrac{22}{7} \times r \times 25m }

\underline{\mathsf{\star \: Taking \: 25m \: LHS \: we \: have..}}

\mathsf{\longrightarrow \: \dfrac{550 m^2}{25} = 2 \times \dfrac{22}{7} \times r  }

\mathsf{\longrightarrow \: 22m = 2 \times \dfrac{22}{7} \times r  }

\mathsf{\longrightarrow \: 22m = 2 \times \dfrac{22}{7} \times r  }

\underline{\mathsf{\star \: Taking \: \dfrac{22}{7} \: LHS \: we \: have..}}

\mathtt{\longrightarrow \: 22m \times \dfrac{7}{22} = 2 \times \dfrac{22}{7} \times r  }

\mathsf{\longrightarrow \: 7m \: = 2r }

\mathsf{\longrightarrow \: Radius (r) = \dfrac{7m}{2}}

Now we know that :

\implies \: \mathsf{Diameter \: =  \: 2 \times \: radius }

\longrightarrow \: \mathsf{Diameter \: =  \: 2 \times \:\bigg(\dfrac{7m}{2}\bigg)}

\longrightarrow \: \mathsf{Diameter \: =  7m }

Therefore Required answer :

\underline{\boxed{\mathsf{Diameter \: = \: 7m}}}

\large \bigstar \: \underline{\blue{\mathfrak{Points \: To \: Remember}} \bigstar }

\mathsf{\underline{Cylinder}}

\mathsf{\star \: Curved \: Surface \: Area = 2\pi r h}

\mathsf{\star \: Total \: Surface \: Area = 2 \pi r(r + h)}

\mathsf{\star \: Volume  = \pi r^2 h}

Answered by RvChaudharY50
40

Given :-----

  • Surface area of tunnel = 550m²
  • length of cylinderical tunnel = 25m
  • Diameter of tunnel = ?

Formula used :-----

  • CSA of cylinder = 2πrh
  • π = 22/7
  • diameter of tunnel = 2× radius of tunnel
  • length = Height of tunnel

Calculation :------

2 \times \pi \times r \times h = 550 \\  \\ 2 \times  \frac{22}{7}  \times r \times 25 = 550 \\  \\ r =   \frac{ \cancel{550} \times 7}{2 \times \cancel 22 \times \cancel 25}   \\  \\ r =  \frac{7}{2}  \: m

Hence, \:  diameter  \: of  \: tunnel  \: = 2 \times  \frac{7}{2}  \\  \\ diameter = 7 \: m

(Hope it helps you)

Similar questions