Math, asked by SanjyotBhujbal8922, 1 year ago

Surface area of two spheres in ratio 9 25 then their volume ratio

Answers

Answered by haridasan85
1

Answer:

Ai:A2 = 4 πri^2:4πr2^2

9:25 =vr1^2:r2^2

3:5=r1:r2

Ratio of volumes

4πri3/3:4πr 2^3

4πx3^3/4:4π5^3/4 =3^3/5^3=27/125

= 27:125 Ratio of volumes

Answered by ihrishi
0

Step-by-step explanation:

Let \: the \: surface \: areas\: of \: two \:  \\ spheres \: be \:  s_1 \: and \: s_2. \:  \\ radii \: be \:   r_1 \: and \: r_2. \\ volumes \: be \:  v_1 \: and \: v_2. \\  \therefore \:  \frac{s_1}{s_2}  =  \frac{4 \pi \:  {r_1}^{2} }{4 \pi \:  {r_2}^{2}}  \\  \implies \: \frac{s_1}{s_2}  =  \frac{{r_1}^{2} }{{r_2}^{2}} \\  \implies \: \frac{9}{25}  =  \frac{{r_1}^{2} }{{r_2}^{2}}  \\  \implies \:  \frac{r_1}{r_2}  =  \frac{3}{5}  \\ \implies  \frac{{r_1}^{3} }{{r_2}^{3}} =  \frac{27}{125}........(1) \\ ratio \: of \: volumes \\ \frac{v_1}{v_2}  =  \frac{ \frac{4}{3}  \pi \:  {r_1}^{3} }{ \frac{4}{3}  \pi \:  {r_2}^{3}}   \\ \frac{v_1}{v_2}  =  \frac{ {r_1}^{3} }{ {r_2}^{3}}......(2) \\ from \: (1) \: and \: (2) \: we \: have:  \\ \frac{v_1}{v_2}  =  \frac{27}{125}  \\ v_1 : v_2 = 27 : 125

Similar questions