Math, asked by rajmeh2006, 6 months ago






surface area of volume all formula ​

Answers

Answered by Saby123
30

Visit this línk for the first part !

https://brainly.in/question/37316765

Cone -

 \setlength{\unitlength}{1.2mm}\begin{picture}(5,5)\thicklines\put(0,0){\qbezier(1,0)(12,3)(24,0)\qbezier(1,0)(-2,-1)(1,-2)\qbezier(24,0)(27,-1)(24,-2)\qbezier(1,-2)(12,-5)(24,-2)}\put(-0.5,-1){\line(1,2){13}}\put(25.5,-1){\line(-1,2){13}}\multiput(12.5,-1)(2,0){7}{\line(1,0){1}}\multiput(12.5,-1)(0,4){7}{\line(0,1){2}}\put(18,1.6){\sf{r}}\put(9.5,10){\sf{h}}\end{picture}

Curved Surface Area - πrl

Total surface area - πr( l + r)

Volume - ⅓ π r²h

5. Cone ( Frustum ) -

 \setlength{\unitlength}{1cm}\begin{picture}\linethickness{0.4mm}\qbezier( - 1, 0)( - 1,0)(1,3)\qbezier(5.2, 0)(5.2,0)(3,3)\qbezier(1, 3)(2,2.5)(3,3)\qbezier(1, 3)(2,3.5)(3,3)\qbezier( - 1, 0)(1.8, 0.8)(5.2,0)\qbezier( - 1, 0)(1.8, - 1)(5.2,0)\qbezier(4.8, 0)( - 1, 0)(5.2,0)\qbezier(3, 3)(1, 3)(3,3)\put(2,0){\dashbox{0.2}(1,3)}\put(2,0){\circle*{0.19}}\put(2,2.99){\circle*{0.19}}\put(1.2,1.3){\bf H}\put(3.2,-1){\bf R}\put(2.3,3.4){\bf\large r}\end{picture}

Curved Surface Area : π ( R + r ) l

Total surface area : π r² + π R² + πr ( l + r )

Volume - ⅓ π h( R² + Rr + r² )

6. Sphere

 \setlength{\unitlength}{1.2cm}\begin{picture}(0,0)\thicklines\qbezier(2.3,0)(2.121,2.121)(0,2.3)\qbezier(-2.3,0)(-2.121,2.121)(0,2.3)\qbezier(-2.3,0)(-2.121,-2.121)(0,-2.3)\qbezier(2.3,0)(2.121,-2.121)(-0,-2.3)\qbezier(-2.3,0)(0,-1)(2.3,0)\qbezier(-2.3,0)(0,1)(2.3,0)\thinlines\qbezier (0,0)(0,0)(0.2,0.3)\qbezier (0.3,0.4)(0.3,0.4)(0.5,0.7)\qbezier (0.6,0.8)(0.6,0.8)(0.8,1.1)\qbezier (0.9,1.2)(0.9,1.2)(1.1,1.5)\qbezier (1.2,1.6)(1.2,1.6)(1.38,1.9)\put(0.2,1){\bf R}\end{picture}

Surface Area : 4π r².

Volume : 4/3 πr³ .

7. Hemisphere

Curved Surface Area : 2πr².

Total surface area : 3πr²

Volume - ⅔ πr³.

8. Spherical Shell

 \setlength{\unitlength}{1cm}\begin{picture}(0,0)\thicklines\qbezier(2.3,0)(2.121,2.121)(0,2.3)\qbezier(-2.3,0)(-2.121,2.121)(0,2.3)\qbezier(-2.3,0)(-2.121,-2.121)(0,-2.3)\qbezier(2.3,0)(2.121,-2.121)(-0,-2.3)\qbezier(1.2,0)(1.121,1.121)(0,1.2)\qbezier(1.2,0)(1.121,-1.121)(0,-1.2)\qbezier(0,-1.2)(-1.121,-1.121)(-1.2,0)\qbezier(-1.2,0)(-1.121,1.121)(0,1.2)\put(-0,0){\vector(-1,0){2.3}}\put(0,0){\vector(0,1){1.2}}\put(-1.9,0.2){$\bf r $}\put(0.2,0.3){$\bf R$}\end{picture}

Outer curved surface area - 4πR²

Inner Curved Surface Area - 4πr²

Total surface area - 4π( R² + r²)

Volume - 4/3 π [ R³ - r³ ]

__________________________________

Answered by asinsarabiga
1

Step-by-step explanation:

hope this helps you friend

Attachments:
Similar questions