Math, asked by Anonymous, 8 months ago

Susandhya ♡

Find the sum of the following upto n terms.
(1 -  \frac{1}{n}) + (1 -  \frac{2}{n}) + (1 -  \frac{3}{n}) + ...
Knock them dead! xD ​

Answers

Answered by Anonymous
53

\large{\underline{\underline{\mathfrak{\sf{\blue{Answer-}}}}}}

\large{\underline{\boxed{\mathfrak{\purple{\sf{S_n=\dfrac{n-1}{2}}}}}}}

\large{\underline{\underline{\mathfrak{\sf{\blue{Explanation-}}}}}}

\orange{\boxed{\pink{\underline{\red{\mathfrak{Given\:sequence-}}}}}}

\sf{(1 - \dfrac{1}{n}) + (1 - \dfrac{2}{n}) + (1 - \dfrac{3}{n}) +...}

\orange{\boxed{\pink{\underline{\red{\mathfrak{To\:find-}}}}}}

  • Sum of given sequence upto n terms.

\orange{\boxed{\pink{\underline{\red{\mathfrak{Formula\:used-}}}}}}

★ d ( common difference ) = a_2\:-a_1

S_n = \sf{\dfrac{n}{2}[2a+(n-1)d]}

\orange{\boxed{\pink{\underline{\red{\mathfrak{Solution-}}}}}}

Here, a ( first term ) = \sf{(1-\dfrac{1}{n})}

a_2 ( second term ) = \sf{(1-\dfrac{2}{n})}

d ( common difference ) = a_2\:-a_1

\implies d = \sf{(1-\dfrac{2}{n})} - \sf{(1-\dfrac{1}{n})}

\implies d = \sf{\cancel{1}}-\dfrac{2}{n}-\cancel{1}+\dfrac{1}{n}

\implies d = \sf{\dfrac{-2+1}{n}}

\implies d = \sf{\dfrac{-1}{n}}

\rule{200}2

\sf{\orange{S_n}} = \sf{\orange{\dfrac{n}{2}[2a+(n-1)d]}}

Putting the given values,

\implies S_n = \sf{\dfrac{n}{2}×2[1-\dfrac{1}{n}+(n-1)(\dfrac{-1}{n})]}

\implies S_n = \sf{\dfrac{n}{2}×2[\dfrac{(n-1)}{n}+\dfrac{(-n+1)}{n}]}

\implies S_n = \sf{\dfrac{n}{2}×[\dfrac{2n-2-n+1}{n}}]

\implies S_n = \sf{\dfrac{\cancel{n}}{2}×[\dfrac{n-1}{\cancel{n}}]}

\implies S_n = \sf{\dfrac{1}{2}(n-1)}

\large{\purple{⟹}} \large{\underline{\boxed{\mathfrak{\purple{\sf{S_n=\dfrac{n-1}{2}}}}}}}

\rule{200}2

#answerwithquality

#BAL

Answered by Anonymous
16

\bf{\Huge{\underline{\boxed{\sf{\orange{ANSWER\::}}}}}}

\bf{\Large{\underline{\bf{Given\::}}}}}

The series are \sf{(1-\frac{1}{n} )\:+\:(1-\frac{2}{n} )\:+\:(1-\frac{3}{n} )+......}

\bf{\Large{\underline{\bf{To\:find\::}}}}}

The sum of the following upto n terms.

\bf{\Large{\boxed{\rm{\red{Explanation\::}}}}}

We have,

\leadsto\rm{First\:term\:(a)=(1-\frac{1}{n} )}

A/q

\leadsto\rm{Common\:difference\:(d)=(1-\frac{2}{n} )\:-\:(1-\frac{1}{n} )}

\leadsto\rm{Common\:difference\:(d)=(\frac{n-2}{n} )-(\frac{n-1}{n} )}

\leadsto\rm{Common\:difference\:(d)=\frac{n-2}{n} -\frac{n+1}{n} }

\leadsto\rm{Common\:difference\:(d)=\frac{\cancel{n}-2\cancel{-n}+1}{n} }

\leadsto\rm{\pink{Common\:difference\:(d)=\:-\frac{1}{n} }}

Now,

We know that formula of the sum of arithmetic progression:

\mapsto\sf{Sn\:=\:\frac{n}{2} [2a+(n-1)d]}

therefore,

\mapsto\sf{Sn\:=\:\frac{n}{2} [2(1-\frac{1}{n} )+(n-1)(-\frac{1}{n} )]}

\mapsto\rm{Sn\:=\:\frac{n}{2} [2-\frac{2}{n} +(-1+\frac{1}{n} )]}

\mapsto\sf{Sn\:=\:\frac{n}{2} [\frac{2n-2}{n} +\frac{-n+1}{n} ]}

\mapsto\sf{Sn\:=\:\frac{n}{2} [\frac{2n-2-n+1}{n} ]}

\mapsto\sf{Sn\:=\:\frac{\cancel{n}}{2}* (\frac{n-1}{\cancel{n}} )}

\mapsto\sf{Sn\:=\:\frac{n-1}{2} }

Thus,

\bf{\large{\boxed{\sf{\blue{The\:nth\:term\:of\:an\:A.P.\:is\:\frac{n-1}{2} }}}}}

Similar questions