Math, asked by goodquestionsonlyher, 11 days ago

#Sybermath
If \sqrt[3]{x}+\sqrt[3]{y}=\sqrt[3]{z}, evaluate \dfrac{xyz}{(z-x-y)^{3}}.

Answers

Answered by user0888
10

\large\text{$\boxed{\bold{[Given\ information]}}$}

\large\text{$\bullet\ \sqrt[3]{x}+\sqrt[3]{y}=\sqrt[3]{z}$}

\large\text{$\boxed{\bold{[Step\ 1.]}}$}

If we move \large\text{$\sqrt[3]{z}$} and isolate the variables, what will happen?

\large\text{$\cdots\longrightarrow\sqrt[3]{x}+\sqrt[3]{y}-\sqrt[3]{z}=0$}

More like, -

\large\text{$\cdots\longrightarrow\sqrt[3]{x}+\sqrt[3]{y}+\sqrt[3]{-z}=0.$}

\large\text{$\boxed{\bold{[Explanation:\ Identity]}}$}

Then, we have learned a very familiar identity of three variables.

\large\text{$\cdots\longrightarrow\boxed{\begin{aligned}&A^{3}+B^{3}+C^{3}-3ABC\\\\&=(A+B+C)(A^{2}+B^{2}+C^{2}-AB-BC-CA)\end{aligned}}$}

The condition for zero is \large\text{$A+B+C=0\text{ or }A=B=C$}. Also, the given condition exactly matches.

\large\text{$\cdots\longrightarrow A^{3}+B^{3}+C^{3}-3ABC=0$}

Then, after simple modification we get \large\text{$A^{3}+B^{3}+C^{3}=3ABC$}.

\large\text{$\boxed{\bold{[Step\ 2.]}}$}

The condition leads to one equation.

\large\text{$\cdots\longrightarrow\boxed{x+y-z=-3\sqrt[3]{xyz}}$}

So, by applying the equation, we can finally find out our answer.

\large\text{$\cdots\longrightarrow\boxed{\begin{aligned}&\dfrac{xyz}{(z-x-y)^{3}}\\\\&=\dfrac{xyz}{-(x+y-z)^{3}}\\\\&=\dfrac{xyz}{-(-3\sqrt[3]{xyz})^{3}}\\\\&=\dfrac{xyz}{27xyz}\\\\&=\underline{\dfrac{1}{27}}\end{aligned}}$}

\large\text{$\boxed{\bold{[Final\ answer]}}$}

So, we got our answer.

\large\text{$\cdots\longrightarrow\boxed{\bold{\dfrac{xyz}{(z-x-y)^{3}}=\dfrac{1}{27}}}$}

Similar questions