Math, asked by kanavagrawal1108, 1 month ago

t+1/5-t-1=1/10 solve​

Answers

Answered by ItzImran
20

\huge\color{lime}\ \boxed{\colorbox{black}{Answer : ♞ }}

\frac{ t+1  }{ 5-t-1  }  = \frac{ 1  }{ 10  }

SOLUTION:

Variable \: t  \: cannot  \: be  \: equal \:  to \:  \\  4  \: since  \: division  \: by  \: zero \:  is  \: not  \\ defined.  \: Multiply \:  both  \: sides \:  of  \\ the \:  equation \:  by  \: 10\left(t-4\right),  \: the  \\ least  \: common \:  multiple \:  of  \:  \\ 5-t-1,10.

 =  >  \color{red} \:  \: -10\left(t+1\right)=t-4

Use \:  the \:  distributive  \: property \:  to \:  \\  multiply -10  \: by \:  t+1.

 =  >  \color{red}-10t-10=t-4

Subtract \:  \:  t \:   \: from  \: both  \: sides.

 =  >  \color{red}-10t-10-t=-4

Combine  \: -10t \:  and  \: -t  \:  \: to  \: get  \: -11t.

 =  >  \color{red}-11t-10=-4

Add  \: 10  \: to  \: both  \: sides.

 =  >  \color{red}-11t=-4+10

Add  \: -4  \: and \:  10  \: to  \: get  \: 6.

 =  >  \color{red}-11t=6

Divide  \: both \:  sides \:  by \:  -11.

 =  >  \color{red}t=\frac{6}{-11}

Fraction  \: \frac{6}{-11} \:  can  \: be \:  rewritten  \:  \\ as -\frac{6}{11}  \: by \:  extracting  \: the  \:  \\ negative  \: sign.

 =  >  \color{red}t=-\frac{6}{11}

 \color{blue}t=-\frac{6}{11}\approx -0.545454545

Similar questions