Physics, asked by ashbiram7022, 9 months ago

T=2π×l/g check the correctness

Answers

Answered by shadowsabers03
3

We are given to check the correctness of the equation,

\displaystyle\longrightarrow\sf{T=2\pi\cdot\dfrac {l}{g}}

where,

  • \displaystyle\sf {T=} time period (of a simple pendulum)

  • \displaystyle\sf {l=} length (of string)

  • \displaystyle\sf {g=} acceleration due to gravity

The dimension of time period is,

  • \displaystyle\sf {[T]=T\quad\quad\dots (1)}

The dimension of length is,

  • \displaystyle\sf {[L]=L}

The dimension of acceleration due to gravity is,

  • \displaystyle\sf {[g]=L\,T^{-2}}

The term \displaystyle\sf {2\pi} is a dimensionless constant.

Hence,

\displaystyle\longrightarrow\sf{\left[\dfrac {l}{g}\right]=\dfrac {L}{L\,T^{-2}}}

\displaystyle\longrightarrow\sf{\left[\dfrac {l}{g}\right]=\dfrac {1}{T^{-2}}}

\displaystyle\longrightarrow\sf{\left[\dfrac {l}{g}\right]=T^2\quad\quad\dots (2)}

From (1) and (2),

\displaystyle\longrightarrow\sf {\underline {\underline {[T]\neq\left [\dfrac {l}{g}\right]}}}

Thus the equation is not correct.

Answered by prettykohli
0

Answer:

Explanation: ur answer

Attachments:
Similar questions