Math, asked by Anonymous, 2 days ago

t-(2t+5)-5(1-2t)=2(3+4t)-3(t-4 ??
Please solve by Proper explanation ​

Answers

Answered by anindyaadhikari13
35

\textsf{\large{\underline{Solution}:}}

• We have to find out the value of t.

Given That:

→ t - (2t + 5) - 5(1 - 2t) = 2(3 + 4t) - 3(t - 4)

→ t - 2t - 5 - 5 + 10t = 6 + 8t - 3t + 12

→ (10 + 1 - 2)t - 10 = (8 - 3)t + 18

→ 9t - 10 = 5t + 18

→ 9t - 5t = 18 + 10

→ 4t = 28

Dividing both sides by 4, we get:

→ t = 28/4

→ t = 7

• So, the value of t satisfying the given equation is 7.

\textsf{\large{\underline{Verification}:}}

Take t = 7, the LHS becomes:

= 7 - (2 × 7 + 5) - 5(1 - 2 × 7)

= 7 - (14 + 5) - 5(1 - 14)

= 7 - 19 - 5 × (-13)

= -12 + 65

= 53

Take t = 7, the RHS becomes:

= 2(3 + 4 × 7) - 3 × (7 - 4)

= 2(3 + 28) - 3 × 3

= 2 × 31 - 9

= 62 - 9

= 53

Therefore, our answer is correct (Verified)

\textsf{\large{\underline{Answer}:}}

  • The value of t is 7.

anindyaadhikari13: Thanks for the Brainliest ^_^
Answered by jungkookIsspecial
69

\large\underline \purple{\underline{\bigstar{\textbf{\textsf{\: given \: equation\::-}}}}}

⇝ \sf \: t - (2t - 5) - 5(1  - 2t) = 2(3 + 4t) - 3(t - 4) \\

\large\underline \purple{\underline{\bigstar{\textbf{\textsf{\: to find\::-}}}}}

the value of t

\large\underline \purple{\underline{\bigstar{\textbf{\textsf{\: solution\::-}}}}}

⇝ \sf \: t - (2 + 5) - 5(1 + 2t) = 2(3 + 4t) - 3(t - 4) \\  \\  \\

⇝ \sf t - 2t - 5 - 5 + 10t = 6 + 8t - 3t + 12 \\  \\  \\

⇝ \sf \: 9t - 10 = 5t + 8 \\  \\  \\

⇝ \sf \: 9t - 5t = 18 + 10 \\  \\  \\

⇝ \sf \: 9t - 5t = 28 \\  \\  \\

⇝ \sf \: 4t = 28 \\  \\  \\

⇝ \sf \:  \cancel \frac{28}{4}  = 7 \\  \\  \\

so therefore the value of t is 7.

______________________________________

Similar questions