Math, asked by arbindsharma4650, 7 hours ago

T cot-1 tan का मान ज्ञात करें​

Answers

Answered by sri26appu06
0

Answer:

HINDI ME BOLIYE

Step-by-step explanation:

Answered by Swarup1998
1

The value of cot^{-1}(tanA) is \dfrac{\pi}{2}-A.

Step-by-step explanation:

We know that,

\quad tan^{-1}(x)+cot^{-1}(x)=\dfrac{\pi}{2}

Putting x=tanA in the above relation, we get

\quad tan^{-1}(tanA)+cot^{-1}(tanA)=\dfrac{\pi}{2}

\Rightarrow A+cot^{-1}(tanA)=\dfrac{\pi}{2}

  • since tan^{-1}(tan\theta)=\theta

\Rightarrow \boxed{\bold{cot^{-1}(tanA)=\dfrac{\pi}{2}-A}}

Let us put a few values of A in degree or radian:

• When A=\dfrac{\pi}{4}, cot^{-1}(tan\dfrac{\pi}{4})=\dfrac{\pi}{2}-\dfrac{\pi}{4}=\bold{\dfrac{\pi}{4}}

• When A=\dfrac{\pi}{2}, cot^{-1}(tan\dfrac{\pi}{2})=\dfrac{\pi}{2}-\dfrac{\pi}{2}=\bold{0}

• When A=0, cot^{-1}(tan0)=\dfrac{\pi}{2}-0=\bold{\dfrac{\pi}{2}}

Similar questions