Math, asked by abhishekmadkar77, 9 months ago

t e^2t. sin 3t find Laplace transform​

Answers

Answered by sanjaysog1279
4
  1. L(sin 3t)= 3/ (s^2 + 9 ) as L(sinat = a / (s^2 + a^2 )
  2. L(e^2t sin 3t) = 3/ [(s-2)^2 + 9]
  3. L( te^2t sin 3t) = -d/ds [3/ [(s-2)^2 + 9]
  4. = {{[(s-2)^2 + 9] × 0} - [3(2s - 4)] } / [(s-2)^2 + 9]^2

(On differentiating)

5. =6(s-2)/ ([(s-2)^2 + 9]^2 ( ANS )

Answered by PravinRatta
6

Given,

equation : te^{2t}.sin3t                                  

To Find,

the Laplace transform of the given equation te^{2t}.sin3t

Solution,

applying Laplace to the given equation,

L(sin3t) = \frac{3}{(s^{2}+9) } \\                    [using L(sinat)=\frac{a}{(s^{2}+a^{2})  } ]

L(e^{2t}sin3t)=\frac{3}{[(s-2)^{2} +9]}  \\\\L(te^{2t}sin3t)= -\frac{d}{ds}[\frac{3}{[(s-2)^{2}+9] }]

                   =[[[(s-2)^{2}+9] X 0]-[\frac{3(2s-4)}{[(s-2)^{2}+9 )^{2}] }]

on differentiating

 L(te^{2t}.sin3t)= \frac{6(s-2)}{[(s-2)^{2}+9]^{2}  }

Hence the Laplace transformation of the equation te^{2t}.sin3t is \frac{6(s-2)}{[(s-2)^{2}+9]^{2}  } .

Similar questions