English, asked by Myxteria, 3 months ago

Tʜᴇ ᴀɴɢʟᴇ ᴏғ ᴇʟᴇᴠᴀᴛɪᴏɴ ᴏғ ᴛʜᴇ ᴛᴏᴘ ᴏғ ᴀ ᴛᴏᴡᴇʀ ғʀᴏᴍ ᴀ ᴘᴏɪɴᴛ ᴏɴ ᴛʜᴇ ɢʀᴏᴜɴᴅ, ᴡʜɪᴄʜ ɪs 30 ᴍ ᴀᴡᴀʏ ғʀᴏᴍ ᴛʜᴇ ғᴏᴏᴛ ᴏғ ᴛʜᴇ ᴛᴏᴡᴇʀ, ɪs 30°. Fɪɴᴅ ᴛʜᴇ ʜᴇɪɢʜᴛ ᴏғ ᴛʜᴇ ᴛᴏᴡᴇʀ



I'ᴅ ʙᴀɴ ʜᴏɴᴇ ᴡᴀʟɪ ʜ -,-​

Answers

Answered by jaydip1118
2

Answer:

Given:-

Tʜᴇ ᴀɴɢʟᴇ ᴏғ ᴇʟᴇᴠᴀᴛɪᴏɴ ᴏғ ᴛʜᴇ ᴛᴏᴘ ᴏғ ᴀ ᴛᴏᴡᴇʀ ғʀᴏᴍ ᴀ ᴘᴏɪɴᴛ ᴏɴ ᴛʜᴇ ɢʀᴏᴜɴᴅ, ᴡʜɪᴄʜ ɪs 30 ᴍ ᴀᴡᴀʏ ғʀᴏᴍ ᴛʜᴇ ғᴏᴏᴛ ᴏғ ᴛʜᴇ ᴛᴏᴡᴇʀ, ɪs 30°. Fɪɴᴅ ᴛʜᴇ ʜᴇɪɢʜᴛ ᴏғ ᴛʜᴇ ᴛᴏᴡᴇʀ

To Find:-

Fɪɴᴅ ᴛʜᴇ ʜᴇɪɢʜᴛ ᴏғ ᴛʜᴇ ᴛᴏᴡᴇʀ.

100% correct answer

Hope it's helpful ✌️✌️

\huge\color{red}\boxed{\colorbox{black}{PLEASE\: MARK\:ME\: BRILLIANCE}}

\huge\color{red}\boxed{\colorbox{black}{FOLLOW \:ME}}

Attachments:
Answered by Ɽɑɱ
1

We can use trigonometry to solve the problem.

Let h be the height of the tower.

Then we have:

$\tan 30^\circ = \frac{h}{30\text{ m}}$

Simplifying and solving for $h$, we get:

$h = 30\text{ m}\cdot \tan 30^\circ = 30\text{ m} \cdot \frac{\sqrt{3}}{3} = \boxed{10\sqrt{3}\text{ m}}$

Similar questions