Tʜᴇ ᴀɴɢʟᴇ ᴏғ ᴇʟᴇᴠᴀᴛɪᴏɴ ᴏғ ᴛʜᴇ ᴛᴏᴘ ᴏғ ᴀ ᴛᴏᴡᴇʀ ғʀᴏᴍ ᴀ ᴘᴏɪɴᴛ ᴏɴ ᴛʜᴇ ɢʀᴏᴜɴᴅ, ᴡʜɪᴄʜ ɪs 30 ᴍ ᴀᴡᴀʏ ғʀᴏᴍ ᴛʜᴇ ғᴏᴏᴛ ᴏғ ᴛʜᴇ ᴛᴏᴡᴇʀ, ɪs 30°. Fɪɴᴅ ᴛʜᴇ ʜᴇɪɢʜᴛ ᴏғ ᴛʜᴇ ᴛᴏᴡᴇʀ
I'ᴅ ʙᴀɴ ʜᴏɴᴇ ᴡᴀʟɪ ʜ -,-
Answers
Answered by
2
Answer:
Given:-
Tʜᴇ ᴀɴɢʟᴇ ᴏғ ᴇʟᴇᴠᴀᴛɪᴏɴ ᴏғ ᴛʜᴇ ᴛᴏᴘ ᴏғ ᴀ ᴛᴏᴡᴇʀ ғʀᴏᴍ ᴀ ᴘᴏɪɴᴛ ᴏɴ ᴛʜᴇ ɢʀᴏᴜɴᴅ, ᴡʜɪᴄʜ ɪs 30 ᴍ ᴀᴡᴀʏ ғʀᴏᴍ ᴛʜᴇ ғᴏᴏᴛ ᴏғ ᴛʜᴇ ᴛᴏᴡᴇʀ, ɪs 30°. Fɪɴᴅ ᴛʜᴇ ʜᴇɪɢʜᴛ ᴏғ ᴛʜᴇ ᴛᴏᴡᴇʀ
To Find:-
Fɪɴᴅ ᴛʜᴇ ʜᴇɪɢʜᴛ ᴏғ ᴛʜᴇ ᴛᴏᴡᴇʀ.
100% correct answer
Hope it's helpful ✌️✌️
Attachments:
Answered by
1
We can use trigonometry to solve the problem.
Let be the height of the tower.
Then we have:
$\tan 30^\circ = \frac{h}{30\text{ m}}$
Simplifying and solving for $h$, we get:
$h = 30\text{ m}\cdot \tan 30^\circ = 30\text{ m} \cdot \frac{\sqrt{3}}{3} = \boxed{10\sqrt{3}\text{ m}}$
Similar questions