Math, asked by aryanthakur59, 1 year ago

t square minus 15 fingers the relationship between zeros of the coefficients


sadanand58: u can mark me brainliest if my answer helped you

Answers

Answered by sadanand58
2

 {t}^{2}  - 15 = 0 \\ t =  + \sqrt{15 \: }  \:  \:  \:  \: or \:  \ -  \sqrt{15}

Answered by Anonymous
0
Let \: p(t) \: be \: the \: given \: polynomial \\ \\ p(t) = t {}^{2} - 15 = (t + \sqrt{15})(t - \sqrt{15} ) \\ \\ Now ,\\ p(t) = 0 \\ \\ = > (t + \sqrt{15} )(t - \sqrt{15} ) = 0 \\ \\ = > t = - \sqrt{15} \: or \: \sqrt{15 } \\ \\ = > \alpha = - \sqrt{15} \: \: and \: \: \beta = \sqrt{15 } \\ \\ \\ Sum \: of \: zeros: \\ \alpha + \beta = - \sqrt{15} + \sqrt{15} = 0 \\ \\ Product \: of \: zeros :\\ \alpha \beta = - \sqrt{15} \times \sqrt{15} = - 15
Similar questions