Math, asked by rocky11851, 1 year ago

t
 \sqrt{ \frac{x}{1 - x} }  +  \sqrt{ \frac{1 - x}{x} }  =  \frac{13}{6}

Answers

Answered by tahseen619
5

 \sqrt{ \frac{x}{1 - x} } + \sqrt{ \frac{1 - x}{x} } = \frac{13}{6}  \\  {( \frac{ \sqrt{x} }{ \sqrt{1 - x} }  +   \frac{ \sqrt{1 - x} }{ \sqrt{x} })  }^{2}   =  {( \frac{13}{6} )}^{2}  \\  \frac{ {x} }{1 - x}  +  \frac{1 - x}{x}  + 2 =  \frac{169}{36}  \\  \frac{ {x}^{2}  +  {(1 - x)}^{2} }{x -  {x}^{2} }  =  \frac{169 - 72}{36}  \\  \frac{ {x}^{2}  - 1 + 2x -  {x}^{2} }{x -  {x}^{2} }  =  \frac{97}{36}  \\  \frac{ 2x - 1 }{x -  {x}^{2} }  =  \frac{97}{36}  \\ 72x - 36 = 97x - 97 {x}^{2}  \\ 97 {x}^{2}  - 97x + 72x - 36 = 0 \\ 97 {x}^{2}  - 25x - 36 = 0
Similar questions