Math, asked by faadilsk04, 1 year ago

t18 of an AP 6,13,20,27

Answers

Answered by Anonymous
3

d = t_{2}  - t_{1}  \\  d = 13 - 6 \\ d = 7
Here
First term(a)=6
Common difference(d)=7

 {n}^{th}  \:  \: term \:  \: of \:  \: an \:  \: ap
t_{n}  = a + (n - 1)d \\ t_{18}  = 6 + (18 - 1) \times 7 \\ t_{18}  = 6 + 119 \\ t_{18}  = 125
Answered by AnswerStation
3
\boxed{\boxed{\large\mathsf{125}}}
___________________________________

\underline{\Large\mathbf{ Given :}}

\mathsf{In \: the \: A.P \: 6, 13, 20, 27}

\mathsf{First \: term(a) = 6}

\mathsf{Common \: Difference (d)} \\\mathsf{ => t_2 - t_1 = 13 - 6 = 7}

\underline{\Large\mathbf{To \: Find :}}

\mathsf{18^{th} term \: of \: t_{18}}

\underline{\underline{\huge\mathfrak{Solution :}}}

\underline{\textsf{Using the Formula,}}

\boxed{\Large\mathsf{a_n = a + (n-1)d}}

\mathsf{=> t_{18} = a + (t-1)d}

\underline\text{Putting the Values in the Formula, We get,}

\mathsf{=> t_{18} = 6 + (18-1)7 }

\mathsf{=> t_{18} = 6 + 17(7)}

\mathsf{=> t_{18} = 6 + 119}

\boxed{\mathbf{=> t_{18} = 125}}

Hence, the \mathsf{18^{th}} term of A.P is \mathsf{125.}
____________________________________
Similar questions