Math, asked by kaverikumari38, 9 months ago

( t2-1) dt integrate it ??​

Answers

Answered by Anonymous
2

Answer:

{t}^{3 }  \div 3 + t

Answered by anindyaadhikari13
6

\bf\large\underline\blue{Question:-}

  • Integrate ( {t}^{2}  - 1) \: dt

\bf\large\underline\blue{Solution:-}

 \int ( {t}^{2}  - 1) \: dt

Using the property of integrals, i.e.,

 \int f(x) \pm g(x) \: dx =  \int f(x) \: dx \pm  \int g(x) \: dx

We get,

 \int  {t}^{2} \:  dt -   \int - 1 \: dt

Now,

We know that of t^{n} is \frac{ {t}^{1 + n} }{1 + n}

Therefore,

 \int  {t}^{2} \:  dt -   \int - 1 \: dt

 =  \frac{ {t}^{3} }{3}   -  \int  - 1 \: dt

 =   \frac{ {t}^{3} }{3}  - t

Now, add the constant of integration, we get,

 =   \frac{ {t}^{3} }{3}  - t + C, C\in\R

\bf\large\underline\blue{Answer:-}

  •  \frac{ {t}^{3} }{3}  - t + C, C\in\R
Similar questions