Math, asked by bawanthaderoshni16, 3 months ago

t2-3t=4-2t solve in general form

Answers

Answered by sk7825941
0

Answer:

The Square Root Principle says that When two things are equal, their square roots are equal.

Note that the square root of

   (t-(3/4))2   is

   (t-(3/4))2/2 =

  (t-(3/4))1 =

   t-(3/4)

Now, applying the Square Root Principle to  Eq. #3.2.1  we get:

   t-(3/4) = √ -23/16

Add  3/4  to both sides to obtain:

   t = 3/4 + √ -23/16

In Math,  i  is called the imaginary unit. It satisfies   i2  =-1. Both   i   and   -i   are the square roots of   -1 

Since a square root has two values, one positive and the other negative

   t2 - (3/2)t + 2 = 0

   has two solutions:

  t = 3/4 + √ 23/16 •  i 

   or

  t = 3/4 - √ 23/16 •  i 

Note that  √ 23/16 can be written as

  √ 23  / √ 16   which is √ 23  / 4

Solve Quadratic Equation using the Quadratic Formula

 3.3     Solving    2t2-3t+4 = 0 by the Quadratic Formula .

 According to the Quadratic Formula,  t  , the solution for   At2+Bt+C  = 0  , where  A, B  and  C  are numbers, often called coefficients, is given by :

                                     

            - B  ±  √ B2-4AC

  t =   ————————

                      2A

  In our case,  A   =     2

                      B   =    -3

                      C   =   4

Accordingly,  B2  -  4AC   =

                     9 - 32 =

                     -23

Applying the quadratic formula :

               3 ± √ -23

   t  =    —————

                    4

Answered by muskansinha26012004
0

Answer:

t = 4 is the correct answer

Step-by-step explanation:

2t-3t=4-2t

2t+2t-3t=4

4t-3t=4

t = 4

Attachments:
Similar questions