Math, asked by vrajuhod, 3 months ago

TA+B+C = 180° then cot
A B C С
-
+ cot + cot
2
2 2
RALD PACKAGE
2 ABC the value of cos(4+28 + 2C)+c8(479)
o
fA+B = 45°, then prove that (1 + tanA) (1 + tanB) = 2.
YA,B,C are angles of a triangle and if none of them is equ
an A + tan B + tan C = tanA.tanB.tanC.
Matrix Match Type:
1) sin150.cos 150
p) 2-1
2.5
cos(a+2b+3c)/2+cos(a-c)/2

Answers

Answered by preetisinghkrishna
0

We have, cotA+cotB+cotC=

3

Squaring,

cot

2

A+cot

2

B+cot

2

C+2cotAcotC+2cotBcotC+2cotCcotA=3 ...(1)

Now in △ABC. A+B+C=π⇒A+B=π−C

⇒cot(A+B)=cot(π−C)

cotA+cotB

cotA.cotB−1

=−cotC

⇒cotAcotB+cotBcotC+cotCcotA=1 ...(2)

From (1) and (2) , we have,

cot

2

A+cot

2

B+cot

2

C+2cotAcotB+2cotBcotC+2cotCcotA

=3[cotAcotB+cotBcotC+cotCcotA]

⇒cot

2

A+cot

2

B+cot

2

C−cotAcotB−cotBcotC−cotCcotA=0

2

1

[(cotA−cotB)

2

+(cotB−cotC)

2

+(cotC−cotA)

2

]=0

[∵x

2

+y

2

+z

2

−zx−xy−zy=

2

1

{(x−y)

2

+(y−z)

2

+(z−x)

2

}]

⇒(cotA−cotB)

2

+(cotB−cotC)

2

+(cotC−cotA)

2

=0

⇒cotA=cotB=cotC

[Since R.H.S. is zero, each square must be zero]

⇒A=B=C [for triangle]

⇒ Triangle is equilateral.

Hiiiii, hope it is helpful

Similar questions