TA is a tangent at A to the circle, centre O. Angle OAB = 50 degrees. Find the value of y,z, and t
Attachments:
Answers
Answered by
2
Answer:
OB=OA[radii of same circle]
so,<OAB=<OBA[the angles opposite to equal sides are equal ]
angle OAB=angle OBA=50°
sum of the angles of triangle=180°
angle OBA+angle OAB+angle AOB=180°
50°+50°+y°=180°
100°+y°=180°
y°=180°-100°
y=80°
sum of the linear pair angle is equal to 180 degrees
angle OBA+angleABT=180°
50°+angleABT=180°
angle ABT = 180°-50°=130°
angle OAB+angle BAT=90°(TA is a tangent at A)
50°+angle BAT=90°
angle BAT(z°)=90°-50°=40°
sum of the angles of triangle is equal to 180 degrees
<ABT+<BAT+<ATB=180°
130°+40°+t°=180°
170°+t°=180°
t°=180°-170°
t°=10°
Similar questions