Hindi, asked by ramavtarmaurya870, 1 month ago

तुम्हाला माहीत असलेले शालीचे कोणतेही ४ उपयोग लिहा​

Attachments:

Answers

Answered by kuswahaaaditya33
2

Answer:

Defination :-

Electric potential at a point may be defined as Work done in bringing a unit positive test charge from infinity to that point without changing kinetic energy.

⇝ In Attached Figure :-

q = Point charge due to which electric potential is to be find.

\large\sf+ q_ \circ+q∘ = +ve Test charge

P = Any point at distance r where potential is to be find.

\large \dag† Derivation :-

[ Figure in Attachment ]

Small work done to move charge from point P to infinity is :

\begin{gathered} \text{dW = - F.dx} \\ \end{gathered}dW = - F.dx

\begin{gathered}:\longmapsto \rm{dW = - q_{\circ}E .dx} \\ \end{gathered}:⟼dW=−q∘E.dx

\begin{gathered}:\longmapsto\text{dW} = - \frac{\text{kqq}_{\circ}}{\text x {}^{2} } \\ \end{gathered}:⟼dW=−x2kqq∘

⏩ Integrating Both Side ;

\begin{gathered}\text{W}_{\text P\rightarrow \infty } = - \int\limits^ \infty _\text r \text{kqq}_{\circ}( {\text x}^{ - 2} ) \ \text {dx}\\ \end{gathered}WP→∞=−r∫∞kqq∘(x−2) dx

\begin{gathered} = - \text{kqq}_{\circ} {{\bigg[ - \frac{1}{\text x} \bigg]}_\text r^ \infty } \\ \end{gathered}=−kqq∘[−x1]r∞

\begin{gathered}\text{W}_{\text P \rightarrow \infty } = - \frac{\text{kqq}_{\circ}}{\text r} \\ \end{gathered}WP→∞=−rkqq∘

\large\red{\therefore \: \boxed{ \boxed{\text{W}_{\infty \rightarrow\text P } = \frac{\text{kqq}_{\circ}}{\text r} }}}∴W∞→P=rkqq∘

⏩ By Defination :

\begin{gathered}:\longmapsto \rm V_P=\frac{ W_{\infty \rightarrow P} }{q_{\circ}} \\\end{gathered}:⟼VP=q∘W∞→P

\begin{gathered}:\longmapsto \rm V_P = \frac{{kqq}_{\circ}}{rq_{\circ}} \\ \end{gathered}:⟼VP=rq∘kqq∘

\purple{ \large :\longmapsto  \underline {\boxed{{\bf V_P = \frac{{kq}}{r}} }}}:⟼ VP=rkq

which is electric potential due to a Positive point charge at point P which is r distance away from Positive Charge.

Similar questions