Geography, asked by gulamhasan841, 23 days ago

तीन कैन लिस्ट फर्स्ट थिंग यू डू टू हेल्प एट होम ​

Answers

Answered by narendrasa2004
1

Answer:

Consider unit circle with centre O at the origin let A be the point (1 , 0). Let P , Q and R be the points on the circle such that arc AP = x , arc PQ = y and arc AR = - y.

Then Arc AQ = arc AP + arc PQ = x + y.

Therefore, the co-ordinates of point P , Q and R are

\begin{gathered} \sf (cos \: x ,sin \: x),(cos(x + y) ,sin(x + y)) \\ \bf and \\ \sf (cos( - y),sin ( - y)) \: respectively\end{gathered}

(cosx,sinx),(cos(x+y),sin(x+y))

and

(cos(−y),sin(−y))respectively

We have ,

arc PQ = arc RA

⟼ arc PQ + arc AP = arc RA + arc AP

⟼ arc AQ = arc RP

⟼ Length of chord AQ = Length of chord RP

(∵ In a circle , equal arcs cut off equal chords)

⟼ AQ = RP = \sf AQ^2=RP^2AQ

2

=RP

2

\begin{gathered}\longrightarrow\sf( \cos(x + y) - 1) {}^{2} + (\sin(x + y - 0 {)}^{2} ) \\ \sf = ( \cos \:x - \cos( - y)) {}^{2} + (\sin \: x - \sin( - y) ) {}^{2} \end{gathered}

⟶(cos(x+y)−1)

2

+(sin(x+y−0)

2

)

=(cosx−cos(−y))

2

+(sinx−sin(−y))

2

\begin{gathered}\longrightarrow \sf { \cos }^{2} (x + y) + 1 - 2 \cos(x + y) + \sin {}^{2} (x + y) \\ \sf = {( \cos \: x - \cos \: y)}^{2} + ( { \sin \: x + \sin \: y)}^{2} \end{gathered}

⟶cos

2

(x+y)+1−2cos(x+y)+sin

2

(x+y)

=(cosx−cosy)

2

+(sinx+siny)

2

\bf sin ( - y) = - sin \: y \: \: and \: \: cos( - y) = cos \: ysin(−y)=−sinyandcos(−y)=cosy

\begin{gathered}\longrightarrow\sf \{\cos {}^{2} (x + y) + \sin {}^{2} (x + y) \} \\ \sf+ 1 - 2 \cos(x + y) \\ \sf = { \cos}^{2} x + \cos {}^{2} y - 2 \cos \: x \: \cos \: y \\ \sf + \: { \sin}^{2} x + { \sin}^{2} y + 2 \sin \: x \: \sin \: y\end{gathered}

⟶{cos

2

(x+y)+sin

2

(x+y)}

+1−2cos(x+y)

=cos

2

x+cos

2

y−2cosxcosy

+sin

2

x+sin

2

y+2sinxsiny

\begin{gathered} \longrightarrow\sf1 + 1 - 2 \cos(x + y) \\ \sf = {( \cos }^{2} x + { \sin}^{2} x) + {( \cos }^{2} y + { \sin}^{2} y) \\ \sf - 2 \cos x \cos y + 2 \sin x \sin y \end{gathered}

⟶1+1−2cos(x+y)

=(cos

2

x+sin

2

x)+(cos

2

y+sin

2

y)

−2cosxcosy+2sinxsiny

\begin{gathered} \sf\longrightarrow2 - 2 \cos(x + y) = \\ \sf1 + 1 - 2 \cos x \cos y + 2 \sin x \sin y \\ \\ \sf⟼ - 2 \cos(x + y) = - 2 \cos x \cos y + 2 \sin x \sin y \\ \\ \purple{ \underline {\boxed{{\bf\longrightarrow\cos(x + y) = \cos x \cos y - \sin x \sin y } }}}\end{gathered}

⟶2−2cos(x+y)=

1+1−2cosxcosy+2sinxsiny

⟼−2cos(x+y)=−2cosxcosy+2sinxsiny

⟶cos(x+y)=cosxcosy−sinxsiny

Hence Proved !

___________________________

Proof of cos 2x = cos²x - sin²x :

\begin{gathered} \sf \cos(2x) = \cos(x + x) \\ \\ \bf \{using \: above \: formula \} \\ \\ = \sf \cos x \cos x - \sin x \sin x \\ \\ \large\purple{ \implies \underline {\boxed{{\bf cos 2x=cos {}^{2} x-sin {}^{2} x} }}}\end{gathered}

cos(2x)=cos(x+x)

{usingaboveformula}

=cosxcosx−sinxsinx

cos2x=cos

2

x−sin

2

x

Hence Proved !

Similar questions