Tabulate the difference in characteristics of states of matter
Answers
1) Have a definite shape but have a fixed volume.
2) High density.
3) Their rate of diffusion is least.
4) The movement of the particles is minimum.
5) Force of attraction between the particles is maximum.
Liquids:-
1) Have no definite shape but have a fixed voulme. Liquids basically take the shape of the container.
2) Liquids tend to possess lesser density than solids.
3) Their rate of diffusion is more than solids.
4) The movement of the particles is intermediate.
5) Also the force of attraction between the partices is intermediate.
Gases:-
1) Have no definite shape or fixed volume but gases occupy the whole space of the particular container.
2) Have lower density than other states of matter(liquids and solids).
3) Their rate of diffusion is more than solids or liquids.
4) The movement of the particles is maximum.
5) The force of attraction between the particles is minimum.
Answer:
Solids
A solid’s particles are packed closely together. The forces between the particles are strong enough that the particles cannot move freely; they can only vibrate. As a result, a solid has a stable, definite shape and a definite volume. Solids can only change shape under force, as when broken or cut.
In crystalline solids, particles are packed in a regularly ordered, repeating pattern. There are many different crystal structures, and the same substance can have more than one structure. For example, iron has a body-centered cubic structure at temperatures below 912 °C and a face-centered cubic structure between 912 and 1394 °C. Ice has fifteen known crystal structures, each of which exists at a different temperature and pressure.
A solid can transform into a liquid through melting, and a liquid can transform into a solid through freezing. A solid can also change directly into a gas through a process called sublimation.
Liquids
A liquid is a fluid that conforms to the shape of its container but that retains a nearly constant volume independent of pressure. The volume is definite (does not change) if the temperature and pressure are constant. When a solid is heated above its melting point, it becomes liquid because the pressure is higher than the triple point of the substance. Intermolecular (or interatomic or interionic) forces are still important, but the molecules have enough energy to move around, which makes the structure mobile. This means that a liquid is not definite in shape but rather conforms to the shape of its container. Its volume is usually greater than that of its corresponding solid (water is a well-known exception to this rule). The highest temperature at which a particular liquid can exist is called its critical temperature.
A liquid can be converted to a gas through heating at constant pressure to the substance’s boiling point or through reduction of pressure at constant temperature. This process of a liquid changing to a gas is called evaporation.
Gases
Gas molecules have either very weak bonds or no bonds at all, so they can move freely and quickly. Because of this, not only will a gas conform to the shape of its container, it will also expand to completely fill the container. Gas molecules have enough kinetic energy that the effect of intermolecular forces is small (or zero, for an ideal gas), and they are spaced very far apart from each other; the typical distance between neighboring molecules is much greater than the size of the molecules themselves.
A gas at a temperature below its critical temperature can also be called a vapor. A vapor can be liquefied through compression without cooling. It can also exist in equilibrium with a liquid (or solid), in which case the gas pressure equals the vapor pressure of the liquid (or solid).
A supercritical fluid (SCF) is a gas whose temperature and pressure are greater than the critical temperature and critical pressure. In this state, the distinction between liquid and gas disappears. A supercritical fluid has the physical properties of a gas, but its high density lends it the properties of a solvent in some cases. This can be useful in several applications. For example, supercritical carbon dioxide is used to extract caffeine in the manufacturing of decaffeinated coffee.
please mark me as brainlist