Math, asked by manraj57, 1 year ago

take cube plus b cube upon a square + b square + ab = a + b prove that​

Answers

Answered by BHL
0

\sf{To \ prove \ : \ {\dfrac{a^3 + b^3}{a^2 + b^2 + ab}} = a + b}


\sf{L.H.S. = {\dfrac{a^3 + b^3}{a^2 + b^2 + ab}}}


{\boxed{\sf{a^3 + b^3 = (a + b)(a^2 + b^2 + ab)}}}


\sf{= {\dfrac{(a + b)(a^2 + b^2 + ab)}{a^2 + b^2 + ab}}}


\sf{= {\dfrac{(a + b)( {\cancel{a^2 + b^2 + ab}} )}{ {\cancel{a^2 + b^2 + ab}} }}}


\sf{= a + b}


\sf{= R.H.S.}


\sf{Hence, \ proved.}
Similar questions