Math, asked by taibanaaz52, 1 month ago

Take your time and Please ans buddies...

It's imp.


Attachments:

Answers

Answered by yash26278
1

Answer:

Given details are, Rate = 15 % per annum

Time = 2 years

CI = Rs 1290

By using the formula,

CI = P [(1 + R/100)n – 1] 1290

P [(1 + 15/100)2 – 1] 1290

P [0.3225]

P = 1290/0.3225 = 4000

Answered by Anonymous
63

Answer:

Question :-

➳ Rachna borrowed a certain sum at the rate of 15% per annum. if she paid at the end of the two years Rs.1290 as interest Compounded annually, find the sum she borrowed..

\begin{gathered}\end{gathered}

Solution :-

\begin{gathered}{\textsf{\textbf{\underline{\underline{Given :}}}}}\end{gathered}

  • ➳ Compound Interest = Rs.1290
  • ➳ Rate of Interest = 15% p.a
  • ➳ Time = 2 years

\begin{gathered}\end{gathered}

\begin{gathered}{\textsf{\textbf{\underline{\underline{To Find :}}}}}\end{gathered}

  • ➳ The Sum (Principle)

\begin{gathered}\end{gathered}

\begin{gathered}{\textsf{\textbf{\underline{\underline{Using Formula  :}}}}}\end{gathered}

 \dag{\underline{\boxed{\sf{C.I = P  \bigg(1  + \dfrac{R}{100} \bigg)^{n}  - 1}}}}

\red\bigstar Where

  • ➽ C.I = Compound Interest
  • ➽ P = Principle
  • ➽ R = Rate of Interest
  • ➽ N = Time

\begin{gathered}\end{gathered}

\begin{gathered}{\textsf{\textbf{\underline{\underline{Solution :}}}}}\end{gathered}

\red\bigstar Here

  • ➽ C.I = Rs.1290
  • ➽ R = 15%
  • ➽ N = 2 years
  • ➽ Principle = ?

\begin{gathered}\end{gathered}

\red\bigstar Now,Calculating the sum (Principle) borrowed by Rachna

 \quad{: \implies{\sf{C.I =  \Bigg[P  \bigg(1  + \dfrac{R}{100} \bigg)^{n}  - 1 \Bigg]}}}

  • Substituting the given values

\quad{: \implies{\sf{1290 =  \Bigg[P  \bigg(1  + \dfrac{15}{100} \bigg)^{2}  - 1 \Bigg]}}}

\quad{: \implies{\sf{1290 =  \Bigg[P  \bigg(\dfrac{(1 \times 100) + 15}{100} \bigg)^{2}  - 1 \Bigg]}}}

\quad{: \implies{\sf{1290 =  \Bigg[P  \bigg(\dfrac{115}{100} \bigg)^{2}  - 1 \Bigg]}}}

\quad{: \implies{\sf{1290 =  \Bigg[P  \bigg(\dfrac{115}{100} \times \dfrac{115}{100}  \bigg)  - 1 \Bigg]}}}

\quad{: \implies{\sf{1290 =  \Bigg[P  \bigg(\dfrac{13225}{10000} \bigg) - 1 \Bigg]}}}

\quad{: \implies{\sf{1290 =  \Bigg[P  \bigg( \cancel{\dfrac{13225}{10000}} \bigg) - 1 \Bigg]}}}

\quad{: \implies{\sf{1290 =  \Bigg[P  \bigg({1.3225 - 1} \bigg) \Bigg]}}}

\quad{: \implies{\sf{1290 =  P  \times  {0.3225}}}}

\quad{: \implies{\sf{\dfrac{1290}{0.3225}  =  P}}}

\quad{: \implies{\sf{\dfrac{1290 \times 1000}{0.3225 \times 1000}  =  P}}}

\quad{: \implies{\sf{\dfrac{12900000}{3225}  =  P}}}

\quad{: \implies{\sf{\cancel{\dfrac{12900000}{3225}}  =  P}}}

\quad{: \implies{\sf{Rs.4000  =  P}}}

\quad{\dag{\underline{\boxed{\tt{\blue{Principle} =  \purple{Rs.4000 }}}}}}

\begin{gathered}\end{gathered}

\red\bigstar Hence,

  • ➳ The sum (Principle) is Rs.4000.

\begin{gathered}\end{gathered}

\begin{gathered}{\textsf{\textbf{\underline{\underline{Learn More :}}}}}\end{gathered}

\quad\circ{\underline{\boxed{\sf{\pink{A ={P{\bigg(1 + \dfrac{R}{100}{\bigg)}^{T}}}}}}}}

\quad\circ{\underline{\boxed{\sf{\pink{Amount = Principle + Interest}}}}}

\quad\circ{\underline{\boxed{\sf{\pink{ P=Amount - Interest }}}}}

\quad\circ{\underline{\boxed{\sf{\pink{ S.I = \dfrac{P \times R \times T}{100}}}}}}

\quad\circ{\underline{\boxed{\sf{\pink{P = \dfrac{Amount\times 100 }{100 + (Time \times Rate)}}}}}}

\quad\circ{\underline{\boxed{\sf{\pink{P = \dfrac{Interest \times 100 }{Time \times Rate}}}}}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Similar questions