Math, asked by itskajal, 11 months ago

Taking A=60° ,Prove the question sin2A = 2sinA .cosA​

Answers

Answered by ThisGuyKnowsStuff
1

Answer:

Proven

Step-by-step explanation:

Given: A=60°

To Prove: sin2A = 2sinAcosA

RHS = 2sinAcosA

⇒ 2sin60°cos60°

⇒ 2(√3/2)(1/2)                                                 [ sin60° = √3/2   cos60°= 1/2 ]

⇒ √3/2 = sin60° = sin120°                                       [ sin(180-A) = sinA ]

⇒ sin2*60° = sin2A = LHS

Hence Proved!

Answered by nishi7260
0

Step-by-step explanation:

To prove : sin2A= 2sinA.cosA

Proof : let A=60

 \sin(2 \times 60)  = 2 \sin(60)  \times  \cos(60)

 \sin(120)  = 2 \sin(60)  \times  \cos(60)

 \sin(90 + 30)  = 2 \sin(60)  \times  \cos(60)

 \cos(30)  = 2 \sin(60)  \times  \cos(60)

 \frac{ \sqrt{3} }{2}  = 2 \times  \frac{ \sqrt{3} }{2}  \times  \frac{1}{2}

1 = 1

Hope this helps u Please make me as a brainliest

Similar questions