Math, asked by parthsaini4434, 7 months ago

Taking 'a' as a side of an equilateral triangle, prove that area of an equilateral triangle is √3/4 a2

Answers

Answered by SarcasticL0ve
4

Given, side of an equilateral is a.

We know that,

★ All the sides of an Equilateral triangle are equal.

Therefore,

AB = BC = CA = a

⠀⠀ ━━━━━━━━━━━━━━━━━━━━━━━━

Now, Finding the altitude of ∆ABC, \\ \\

Firstly draw a perpendicular 'h' from point A to base BC. \\ \\

Therefore, \\ \\

AD ⊥ BC \\ \\

\setlength{\unitlength}{1 cm}\begin{picture}(0,0)\thicklines\qbezier(0,0)(0,0)(2,2)\qbezier(0,0)(0,0)(4,0)\qbezier(2,2)(4,0)(4,0)\put(2.7,1.1){$\boldsymbol / $}\put(1.1,1.1){$\boldsymbol \backslash $}\put(1.8,2.1){$\bf A $}\put(-0.3,-0.3){$\bf B$}\put(4,-0.3){$\bf C$}\qbezier(3.6,0.4)(3.4,0.2)(3.6,0)\qbezier(0.4,0.4)(0.6,0.3)(0.4,0)\qbezier(2,2)(2,0)(2,0)\put(1.9,-0.4){$\bf D$}\put(2.3,0){\line(0,1){0.3}}\put(2, 0.3){\line(1,0){0.3}}\put(0.8,1.5){$\bf a $}\put(3,1.4){$\bf a $}\put(1, - 0.5){$\bf \frac{a}{2}$}\put(3, - 0.5){$\bf \frac{a}{2}$}\end{picture}

⠀⠀

⠀⠀ ━━━━━━━━━━━━━━━━━━━━━━━━

Using Pythagoras theorem, \\ \\

In ∆ADC \\ \\

\implies\sf h^2 = AC^2 - DC^2\\ \\

\implies\sf h^2 = a^2 - \bigg( \dfrac{a}{2} \bigg)^2\qquad\qquad\bigg\lgroup\bf DC = \dfrac{1}{2} \times BC \bigg\rgroup\\ \\

\implies\sf h^2 = a^2 - \dfrac{a^2}{4}\\ \\

\implies\sf h^2 = \dfrac{4a^2 - a^2}{4}\\ \\

\implies\sf h^2 = \dfrac{3a^2}{4}\\ \\

\implies\sf \sqrt{h^2} = \sqrt{ \dfrac{3a^2}{4}}\\ \\

\implies{\boxed{\frak{\purple{h = \dfrac{ \sqrt{3}}{2}a}}}}\;\bigstar

⠀⠀ ━━━━━━━━━━━━━━━━━━━━━━━━

Now, As we know that,

\star\;{\boxed{\sf{\pink{Area_{\;(triangle)} = \dfrac{1}{2} \times b \times h}}}}\\ \\

Putting values,

\implies\sf \dfrac{1}{2} \times a \times \dfrac{ \sqrt{3}a}{2}\\ \\

\implies{\boxed{\frak{\purple{ \dfrac{ \sqrt{3}}{2}a^2}}}}\;\bigstar\\ \\

\therefore\;{\underline{\sf{Hence,\;the\;Area\;of\;an\; equilateral\; \triangle\;is\; \bf{ \dfrac{ \sqrt{3}}{2}a^2}.}}}

Similar questions