Math, asked by Jogi11, 11 months ago

Taking 'x', 'y' as variables and 'k' as a constant, if x = 2y and y + k = 11 and x - 2k = -18, then the value of (x+y)
is? Answer with explain

Answers

Answered by priyaMajumdar
22

Answer:

x = 2y

y = x/2........(i)

y + k = 11

x/2 + k = 11

(x + 2k)/2 = 11

x + 2k = 22

2k = 22 - x

x - 2k = -18

x - 22 + x = -18........[ 2k = 22 - 2k ]

x + x = -18 + 22

2x = 4

x = 4/2

x = 2..........(ii)

(i) ..... y = x/2

....... y = 2/2.......[ x = 2 ]

....... y = 1

then..... x + y = 2 +1 = 3

Step-by-step explanation:

....✌✌✌✌✌✌✌

Answered by Anonymous
131

\large{\underline{\underline{\mathfrak{\green{\sf{Solution:-}}}}}}.

\implies\:(x+y)\:=\:30

\large{\underline{\underline{\mathfrak{\green{\sf{Given\:equation :-}}}}}}.

  • \:(x-2y)\:=\:0....(1)

  • \:(y+k)\:=\:11....(2)

  • \:(x-2k)\:=\:18.....(3)

\large{\underline{\underline{\mathfrak{\green{\sf{Find\:here:-}}}}}}.

  • Value of x and y

\large{\underline{\underline{\mathfrak{\sf{Explanation:-}}}}}.

By, equation (2) ,

\implies\:(y\:=\:11-k).......(4)

Keep value of y in equation (1). ,

\implies\:x-2(11-k)\:=\:0

\implies\:x+2k\:=\:22......(5)

Now, Solve equation (3) and (5)

Addition of equation (3)+(5), will be

\implies\boxed{\:x\:=\:20}

Now, keep value of x in equation (5),

\implies\:20+2k\:=\:22

\implies\:2k\:=\:(22-20)

\implies\:k\:=\frac{2}{2}

\implies\boxed{\:k\:=\:1}.........(6)

Now, keep value of k , in equation (4)

\implies\:y\:=\:(11-1)

\implies\boxed{\:y\:=\:10}

Now, Value of (x+y),

\implies\:(x+y)\:=\:(20+10)

\implies\boxed{\boxed{\:(x+y)\:=\:30}}

_______________________

Similar questions