Tama/1+seca-tana/1-seca=2cosecaprove
Answers
solving here step wise,
tanA (1- secA) – tanA (1+secA) / 1- sec^2A
= -2tanAsecA / 1- (1 + tan^2A)
= -2tanAsecA / -tan^2A
= 2secA / tanA
= secA * cotA
= 2/ cosA * cosA / sinA
= 2/ sinA
= 2cosecA
Hence proved.
LHS=1+secAtanA−1−secAtanA
=tanA\big(\frac{1}{1+secA}-\frac{1}{1-secA}\big)=tanA(1+secA1−1−secA1)
=tanA\big(\frac{(1-secA)-(1+secA)}{(1+secA)(1-secA)}\big)=tanA((1+secA)(1−secA)(1−secA)−(1+secA))
=tanA\big(\frac{(1-secA-1-secA)}{(1^{2}-sec^{2}A)}\big)=tanA((12−sec2A)(1−secA−1−secA))
=tanA\big(\frac{(-2secA)}{-(sec^{2}A-1)}\big)=tanA(−(sec2A−1)(−2secA))
=tanA\big(\frac{(-2secA)}{-tan^{2}A}\big)=tanA(−tan2A(−2secA))
/* By Trigonometric identity:
sec²A-1 = tan²A */
=\big(\frac{(2secA)}{tanA}\big)=(tanA(2secA))
=\frac{\frac{2}{cosA}}{\frac{sinA}{cosA}}=cosAsinAcosA2
=\frac{2}{sinA}=sinA2
=2cosecA=2cosecA
=RHS=RHS