Math, asked by shreyanshkr1811, 3 months ago

tan 0
cot e
1 + sec O co'sec O
+
1- coto
1 tan 0​

Answers

Answered by soniarun2006
1

Answer:

LHS = tanO/(1-cotO) + cotO/(1-tanO)

= \begin{gathered} \frac{ \frac{sinO}{cosO} }{1- \frac{cosO}{sinO} } +\frac{ \frac{cosO}{sinO} }{1- \frac{sinO}{cosO} } \\ =\frac{ \frac{sinO}{cosO} }{ \frac{sinO-cosO}{sinO} } +\frac{ \frac{cosO}{sinO} }{ \frac{cosO-sinO}{cosO} } \\ = \frac{sin^2O}{cosO(sinO-cosO)} + \frac{cos^2O}{sinO(cosO-sinO)} \\ = \frac{sin^2O}{cosO(sinO-cosO)} - \frac{cos^2O}{sinO(sinO-cosO)} \\ = \frac{sin^3O-cos^3O}{sinOcosO(sinO-cosO)} \\ =\frac{(sinO-cosO)(sin^2O+cos^2O+sinOcosO)}{sinOcosO(sinO-cosO)} \\ = \frac{1+sinOcosO}{sinOcosO} \\ \end{gathered}

1−

sinO

cosO

cosO

sinO

+

1−

cosO

sinO

sinO

cosO

=

sinO

sinO−cosO

cosO

sinO

+

cosO

cosO−sinO

sinO

cosO

=

cosO(sinO−cosO)

sin

2

O

+

sinO(cosO−sinO)

cos

2

O

=

cosO(sinO−cosO)

sin

2

O

sinO(sinO−cosO)

cos

2

O

=

sinOcosO(sinO−cosO)

sin

3

O−cos

3

O

=

sinOcosO(sinO−cosO)

(sinO−cosO)(sin

2

O+cos

2

O+sinOcosO)

=

sinOcosO

1+sinOcosO

= [1 +(1/cosecOsecO)]/[1/cosecOsecO]

=[(cosecOsecO+1)/cosecOsecO]*[cosecOsecO]

=cosecOsecO+1

=RHS

Hence proved

Similar questions