Math, asked by manishisrani, 4 days ago

(tan 0-cot0)² + 2= sec²0+cosec² 0 - 2​

Answers

Answered by AestheticSky
16

Question:-

LHS :-

 \\  \bullet \quad   { \bigg( \tan \theta -  \cot \theta  \bigg)}^{2}  + 2 \\

RHS :-

 \\  \bullet \quad  { \sec }^{2}  \theta +  { \cosec}^{2}  \theta - 2 \\

 \\  \quad \dag \underline{ \sf Method  \: 1  : -  } \\

◕ Solve by simplifying the LHS

 \\  \quad \longrightarrow  \sf  \bigg( { \tan}  \theta +  { \cot }\theta \bigg)^{2}  + 2 \\

\\  \quad \longrightarrow \sf  { \tan}^{2}  \theta +  { \cot }^{2}  \theta  -  2 \tan \theta. \cot \theta + 2 \\

 \\   \quad \longrightarrow \sf  { \tan}^{2}  \theta +  { \cot}^{2}  \theta - 2 \times \tan \theta \times   \frac{1}{ \tan \theta}  + 2 \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:   \:  \:  \:   \bigg\{  \cot \theta =   \frac{1}{ \tan \theta} \bigg\} \\

 \\  \quad \longrightarrow \sf   { \tan}^{2}  \theta +  { \cot}^{2}  \theta \\

 \\  \quad \longrightarrow \sf  { \sec}^{2}  \theta - 1 +  { \cosec}^{2}  \theta - 1 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \bigg \{  { \tan}^{2}  \theta =  { \sec}^{2}  \theta - 1 \bigg   \} \bigg \{  { \cot}^{2}  \theta =  { \cosec}^{2}  \theta - 1 \bigg   \}  \\

 \\  \quad \longrightarrow   \boxed{\boxed{\sf  { \sec}^{2}  \theta +  { \cosec}^{2}  \theta  - 2 } }\bigstar \\

 \\  \quad \dag \underline{ \sf Method  \: 2  : -  } \\

◕ Solve by simplifying the RHS

 \\  \quad \longrightarrow   \sf  { \sec}^{2}  \theta +  { \cosec}^{2}  \theta  - 2 \\

 \\  \quad \longrightarrow \sf 1 +  { \tan}^{2}  \theta + 1 +  { \cot}^{2}  \theta - 2 \\

 \\  \quad \longrightarrow \sf  { \tan}^{2}  \theta +  { \cot}^{2}  \theta \\

 \\  \quad \longrightarrow \sf  { \bigg(  \tan \theta -  \cot \theta \bigg)}^{2}  - 2 \times  \tan \theta \times   \cot \theta \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \bigg \{  {(a  \pm  b)}^{2} - 2ab =  {a}^{2}   +  {b}^{2} \bigg \} \\

 \\  \quad \longrightarrow \sf  { \bigg(  \tan \theta -  \cot \theta \bigg)}^{2}  - 2 \times  \tan \theta \times   \dfrac{1}{ \tan \theta}  \\

 \\  \quad \longrightarrow  \boxed{ \boxed{\sf  \bigg(   \tan \theta -  \cot \theta \bigg)^{2} - 2 }} \bigstar \\

_________________________________________

Similar questions