tan-1(1/2)=π\4-1/2 cos-1(4/5)
Answers
Answered by
0
Answer:
Let 12cos−1(ab)=x
Then, ab=cos2x→(1)
Now,
L.H.S.=tan(π4+12cos−1(ab))+tan(π4−12cos−1(ab))
=tan(π4+x)+tan(π4−x)
=1+tanx1−tanx+1−tanx1+tanx
=(1+tanx)2+(1−tanx)21−tan2x
=1+tan2x+2tanx+1+tan2x−2tanx1−tan2x
=2(1+tan2x)1−tan2x
We know, tan2x=sec2x−1
So, our expression becomes,
=2sec2x2−sec2x
=2cos2x2−1cos2x
=22cos2x−1
=2cos2x
=2ab (From (1))
=2ba=R.H.S.
Similar questions