Math, asked by TbiaSupreme, 1 year ago

tan⁻¹ 1/2 + tan⁻¹ 1/5 + tan⁻¹ 1/8=π/4,Prove it.

Answers

Answered by abhi178
2
LHS = tan^-1(1/2) + tan^-1(1/5) + tan^-1(1/8)

= [tan^-1(1/2) + tan^-1(1/8) ] + tan^-1(1/5)


we know, tan^-1x + tan^-1y = tan^-1{(x + y)/(1 - xy)}

so, tan^-1(1/2) + tan^-1(1/8) = tan^-1{1/2 + 1/8}/{1 - /1/2 × 1/8}

=tan^-1 {(4 + 1)/8}/{(16 - 1)/16}

= tan^-1{10/15}

= tan^-1{2/3}

now, tan^-1{1/2} + tan^-1{1/8} = tan^-1{2/3}

so, [tan^-1(1/2) + tan^-1(1/8) ] + tan^-1(1/5) = tan^-1{2/3} + tan^-1{1/5}

= tan^-1{(2/3 + 1/5)}/{1 - 2/3 × 1/5}

= tan^-1{(10 + 3)/15}/{(15 -2)/15}

= tan^-1{13/13}

= tan^-1{1} = π/4 = RHS
Answered by hukam0685
2
Hello,

Solution:

we know that

 {tan}^{ - 1} x +  {tan}^{ - 1} y =  {tan}^{ - 1} ( \frac{x + y}{1 - xy} ) \\  \\  {tan}^{ - 1}  \frac{1}{2} +  {tan}^{ - 1}  \frac{1}{5}  =  {tan}^{ - 1} ( \frac{ \frac{1}{2}  +  \frac{1}{5} }{1 -  \frac{1}{10} } ) \\  \\  =  {tan}^{ - 1} ( \frac{7}{9} ) \\  \\  {tan}^{ - 1}  \frac{7}{9} +  {tan}^{ - 1}  \frac{1}{8}  =  {tan}^{ - 1} ( \frac{ \frac{7}{9}  +  \frac{1}{8} }{1 -  \frac{7}{72} } ) \\  \\  =  {tan}^{ - 1} ( \frac{ \frac{56 + 9}{72} }{ \frac{72 - 7}{72} } ) \\  \\  =  {tan}^{ - 1} ( \frac{65 \times 72}{65 \times 72} ) \\  \\  =  {tan}^{ - 1} (1) \\  \\  =  \frac{\pi}{4}  \\  \\ since \:  \:    \tan( \frac{\pi}{4} ) = 1
hence proved that tan⁻¹ 1/2 + tan⁻¹ 1/5 + tan⁻¹ 1/8=π/4

Hope it helps you
Similar questions