Math, asked by badshah2725556, 9 months ago

tan-1(1/7)+2tan-1(1/3)=??​

Answers

Answered by shadowsabers03
2

We have the formula,

  • \tan^{-1}x+\tan^{-1}y=\tan^{-1}\left(\dfrac{x+y}{1-xy}\right)\quad\quad\dots(i)

For x=y,

  • 2\tan^{-1}x=\tan^{-1}\left(\dfrac{2x}{1-x^2}\right)\quad\quad\dots(ii)

Given to find,

\longrightarrow\tan^{-1}\left(\dfrac{1}{7}\right)+2\tan^{-1}\left(\dfrac{1}{3}\right)=\,?

Using (ii),

\longrightarrow\tan^{-1}\left(\dfrac{1}{7}\right)+2\tan^{-1}\left(\dfrac{1}{3}\right)=\tan^{-1}\left(\dfrac{1}{7}\right)+\tan^{-1}\left(\dfrac{2\times\frac{1}{3}}{1-\left(\frac{1}{3}\right)^2}\right)

\longrightarrow\tan^{-1}\left(\dfrac{1}{7}\right)+2\tan^{-1}\left(\dfrac{1}{3}\right)=\tan^{-1}\left(\dfrac{1}{7}\right)+\tan^{-1}\left(\dfrac{\frac{2}{3}}{1-\frac{1}{9}}\right)

\longrightarrow\tan^{-1}\left(\dfrac{1}{7}\right)+2\tan^{-1}\left(\dfrac{1}{3}\right)=\tan^{-1}\left(\dfrac{1}{7}\right)+\tan^{-1}\left(\dfrac{3}{4}\right)

Using (i),

\longrightarrow\tan^{-1}\left(\dfrac{1}{7}\right)+2\tan^{-1}\left(\dfrac{1}{3}\right)=\tan^{-1}\left(\dfrac{\frac{1}{7}+\frac{3}{4}}{1-\frac{1}{7}\times\frac{3}{4}}\right)

\longrightarrow\tan^{-1}\left(\dfrac{1}{7}\right)+2\tan^{-1}\left(\dfrac{1}{3}\right)=\tan^{-1}\left(\dfrac{\frac{25}{28}}{1-\frac{3}{28}}\right)

\longrightarrow\tan^{-1}\left(\dfrac{1}{7}\right)+2\tan^{-1}\left(\dfrac{1}{3}\right)=\tan^{-1}(1)

\longrightarrow\underline{\underline{\tan^{-1}\left(\dfrac{1}{7}\right)+2\tan^{-1}\left(\dfrac{1}{3}\right)=\dfrac{\pi}{4}}}

Hence \dfrac{\pi}{4} is the answer.

Similar questions