Math, asked by richajha205315, 22 hours ago

tan^-1(1+x/1-x)= π\4+ tan^-1 x...pls provide that​

Answers

Answered by senboni123456
2

Step-by-step explanation:

We have,

 \tt{tan^{ - 1} \left(  \dfrac{1 + x}{1 - x}\right) }

Put x = tan(θ)  \implies\sf{tan^{-1}(x)=\theta}

So,

 \sf{ = tan^{ - 1} \left \{  \dfrac{1 + tan( \theta)}{1 - tan( \theta)}\right \} }

 \sf{ = tan^{ - 1} \left \{  \dfrac{tan \left(  \dfrac{\pi}{4} \right) + tan( \theta)}{1 - tan \left(  \dfrac{\pi}{4} \right)  \cdot tan( \theta)}\right \} }

 \sf{ = tan^{ - 1} \left \{ tan \left(  \dfrac{\pi}{4} + \theta\right)\right \} }

 \sf{ =   \dfrac{\pi}{4} + \theta }

 \sf{ =   \dfrac{\pi}{4} + tan^{ - 1}( x )}

Similar questions