Math, asked by richajha205315, 22 hours ago

tan^-1(1+x/1-x)= π\4+ tan^-1 x...pls provide that​

Answers

Answered by kamalhajare543
25

Answer:

Step-by-step explanation:

We have,

\tt{tan^{ - 1} \left( \dfrac{1 + x}{1 - x}\right) }

 \sf \: Put \:  x = tan(θ) \implies\sf{tan^{-1}(x)=\theta}

So,

\sf{ = tan^{ - 1} \left \{ \dfrac{1 + tan( \theta)}{1 - tan( \theta)}\right \} }

\sf{ = tan^{ - 1} \left \{ \dfrac{tan \left( \dfrac{\pi}{4} \right) + tan( \theta)}{1 - tan \left( \dfrac{\pi}{4} \right) \cdot tan( \theta)}\right \}} \\ \\ \sf{ = tan^{ - 1} \left \{ tan \left( \dfrac{\pi}{4} + \theta\right)\right \}}

\sf{ = \dfrac{\pi}{4} + \theta }

\sf{ = \dfrac{\pi}{4} + tan^{ - 1}( x )}

Similar questions