Math, asked by abdulsumear3536, 9 months ago

tan⁻¹(2/11) + tan⁻¹ (7/24) = tan⁻¹ ½ को सिद्ध कीजिये

Answers

Answered by amitnrw
0

Given   :    tan⁻¹(2/11) + tan⁻¹ (7/24) = tan⁻¹ ½

To find :   सिद्ध कीजिए

Solution:

tan⁻¹(2/11) + tan⁻¹ (7/24) = tan⁻¹ ½

दोनों तरफ  tan लेने पर

tan (tan⁻¹(2/11) + tan⁻¹ (7/24) ) = tan (tan⁻¹ ½ )

=> tan (tan⁻¹(2/11) + tan⁻¹ (7/24) ) = 1/2

LHS = tan (tan⁻¹(2/11) + tan⁻¹ (7/24) )

हमें ज्ञात है की   tan ( A + B)  = (tanA + tanB ) /(1 - tanAtanB)

A = tan⁻¹(2/11)

B = tan⁻¹ (7/24)

=( tan ( tan⁻¹(2/11)) + tan (tan⁻¹ (7/24)) ) /(1 -  tan ( tan⁻¹(2/11))tan (tan⁻¹ (7/24)))

= (2/11 + 7/24)/( 1  - (2/11)(7/24))

= { ( 48 + 77)/(11 * 24) } / { (264 - 14)/(11 * 24) }

= 125/250

= 1/2

= RHS

=> LHS = RHS

QED

इति सिद्धम

 tan⁻¹(2/11) + tan⁻¹ (7/24) = tan⁻¹ ½

और सीखें

"cos⁻¹(-1/2 ) का मुख्य मान ज्ञात कीजिये"

brainly.in/question/16549994

cos⁻¹ (½) + 2sin⁻¹(½) का मान ज्ञात कीजिये

brainly.in/question/16554597

sin⁻¹(-1 / 2) का मुख्य मान ज्ञात कीजिये

brainly.in/question/16549991

Cos ⁻¹ (√ 3 /

2 )

brainly.in/question/16549996

Similar questions