Math, asked by anubhavbagchi702, 1 month ago

tan^-1(2 cos(2sin^-1 1÷2) . Find the value . No spam please.​

Answers

Answered by ajr111
7

Answer:

\mathrm{\dfrac{\pi}{3}}

Step-by-step explanation:

Given :

\mathrm{tan^{-1}\bigg(2cos\bigg(sin^{-1}\bigg(\dfrac{1}{2}\bigg)\bigg)\bigg)}

To find :

The value of the given expression

Solution :

\longmapsto \mathrm{tan^{-1}\bigg(2cos\bigg(sin^{-1}\bigg(\dfrac{1}{2}\bigg)\bigg)\bigg)}

We know that,

\boxed{\mathrm{sin^{-1}\bigg(\dfrac{1}{2}\bigg) = \dfrac{\pi}{6}}}

\implies \mathrm{tan^{-1}\bigg(2cos\bigg(\dfrac{\pi}{6}\bigg)\bigg)}

\implies \mathrm{tan^{-1}\bigg(2\times \dfrac{\sqrt3}{2}\bigg)}

\implies \mathrm{tan^{-1}\bigg(\not2\times \dfrac{\sqrt3}{\not2}\bigg)}

\implies \mathrm{tan^{-1}\sqrt3}

We know that,

\boxed{\mathrm{tan^{-1}\sqrt3 = \dfrac{\pi}{3}}}

\implies \mathrm{\underline{\underline{\dfrac{\pi}{3}}}}

\therefore \underline{\boxed{\mathbf{tan^{-1}\bigg(2cos\bigg(sin^{-1}\bigg(\dfrac{1}{2}\bigg)\bigg)\bigg) = \dfrac{\pi}{3}}}}

Extra information :

Trigonometric Values table :

 \Large{ \begin{tabular}{|c|c|c|c|c|c|} \cline{1-6} \theta & \sf 0^{\circ} & \sf 30^{\circ} & \sf 45^{\circ} & \sf 60^{\circ} & \sf 90^{\circ} \\ \cline{1-6} $ \sin $ & 0 & $\dfrac{1}{2 }$ & $\dfrac{1}{ \sqrt{2} }$ & $\dfrac{ \sqrt{3}}{2}$ & 1 \\ \cline{1-6} $ \cos $ & 1 & $ \dfrac{ \sqrt{ 3 }}{2} } $ & $ \dfrac{1}{ \sqrt{2} } $ & $ \dfrac{ 1 }{ 2 } $ & 0 \\ \cline{1-6} $ \tan $ & 0 & $ \dfrac{1}{ \sqrt{3} } $ & 1 & $ \sqrt{3} $ & $ \infty $ \\ \cline{1-6} \cot & $ \infty $ &$ \sqrt{3} $ & 1 & $ \dfrac{1}{ \sqrt{3} } $ &0 \\ \cline{1 - 6} \sec & 1 & $ \dfrac{2}{ \sqrt{3}} $ & $ \sqrt{2} $ & 2 & $ \infty $ \\ \cline{1-6} \csc & $ \infty $ & 2 & $ \sqrt{2 } $ & $ \dfrac{ 2 }{ \sqrt{ 3 } } $ & 1 \\ \cline{1 - 6}\end{tabular}}

[Note : If there is any difficulty viewing this answer in app, kindly see this answer at website brainly.in through desktop mode. The link of this question is : https://brainly.in/question/45820677]

Hope it helps!!

Similar questions