Math, asked by abhinav1887, 11 months ago

tan-¹ 3/5 + tasln -¹ 1/4 = π​

Answers

Answered by Anonymous
8

Correct Question :

tan^{-1} \frac{3}{5}+tan^{-1} \frac{1}{4}=\frac{\pi}{4}

Formula used :

tan^{-1}a+tan^{-1}b=tan^{-1}\frac{a+b}{1-ab}

Now as per the question,

tan^{-1} \frac{3}{5}+tan^{-1} \frac{1}{4}

=tan^{-1} \frac{\frac{3}{5}+\frac{1}{4}}{1-\frac{3}{20}}\\\\=tan^{-1}1\\

= \frac{\pi}{4}

Hence Proved...

Answered by Anonymous
27

 \huge \fcolorbox{e}{pink}{Solution :)}

Given ,

 \large \mathtt{ \fbox{ {Tan}^{ - 1}  (\frac{3}{5})  + {Tan}^{ - 1}  (\frac{1}{4} ) = \frac{\pi}{4} }}

We know that ,

  \large \mathtt{\fbox{ {Tan}^{ - 1}(x) +  {Tan}^{ - 1} (y) =  {Tan}^{ - 1} ( \frac{x + y}{1 - xy} )}}

 \bigstar LHS

 \sf \mapsto {Tan}^{ - 1}  (\frac{3}{5})  + {Tan}^{ - 1}  (\frac{1}{4} ) =  \frac{\pi}{4}  \\  \\ \sf \mapsto {Tan}^{ - 1}( \frac{ \frac{3}{5} +  \frac{1}{4}  }{ 1-  \frac{3}{5}   \times  \frac{1}{4} } ) \\  \\  \sf \mapsto {Tan}^{ - 1}( \frac{ \frac{12 + 5}{20} }{ \frac{20 - 3}{20} } ) \\  \\ \sf \mapsto  {Tan}^{ - 1}( \frac{17}{17} ) \\  \\ \sf \mapsto  {Tan}^{ - 1}(1) \\  \\ \sf \mapsto  \frac{\pi}{4}

 \bigstar RHS

 \therefore \mathtt{LHS = RHS}

Hence proved

_____________ Keep Smiling

Similar questions